written 7.8 years ago by
teamques10
★ 69k
|
•
modified 7.8 years ago
|
$\hspace{1cm} x_1= 10 mm\hspace{1cm} y_1= 10 mm\\
\hspace{1cm} x_2= 70 mm\hspace{1cm} y_2= 35 mm\\
\hspace{1cm} x_3= 75 mm\hspace{1cm} y_1= 25 mm$
$\beta_1=y_2-y_3 = 10\hspace{2.5cm} r_1= x_3-x_2=5\\
\beta_2=y_3-y_1 = 15\hspace{2.5cm} r_2= x_1-x_3=65\\
\beta_1=y_1-y_2 = 25\hspace{2.5cm} r_3= x_2-x_1=60$
$2A=\begin{vmatrix}
\ 1 & 10 & 10 \\
\ 1 & 70 & 35 \\
\ 1 & 75 & 25 \\
\end{vmatrix}=-725 mm^2$
$B=\frac{1}{2A}\begin{bmatrix}
\ \beta_1 & 0 & \beta_2 & 0 & \beta_3 & 0 \\
\ 0_1 & r_1 & 0 & r_2 & 0 & r_3 \\
\ r_1 & \beta_1 & r_2 & \beta_2 & r_3 & \beta_3 \\
\end{bmatrix}$
$=\frac{-1}{725}$
$\begin{bmatrix}
\ 10 & 0 & 15 & 0 & -25 & 0 \\
\ 0 & 5 & 0 & -65 & 0 & 60 \\s
\ 5 & 10 & -65 & 15 & 60 & -25 \\
\end{bmatrix}$
[e]=[B][u]
$\begin {Bmatrix}
\ ex \\
\ ey \\
\ xy \\
\end{Bmatrix}=\frac{-1}{725}$
$\begin{bmatrix}
\ 10 & 0 & 15 & 0 & -25 & 0 \\
\ 0 & 5 & 0 & -65 & 0 & 60 \\
\ 5 & 10 & -65 & 15 & 60 & -25 \\
\end{bmatrix}$
$\begin {Bmatrix}
\ 0.01 \\
\ -0.04 \\
\ 0.03 \\
\ 0.02 \\
\ -0.02 \\
\ -0.04 \\
\end{Bmatrix}$
$\hspace{1.6cm}=\begin {bmatrix}
\ -0.00144 \\
\ 0.00538 \\
\ 0.00304 \\
\end{bmatrix}$
$D=\frac{E}{1-v^2}\begin{bmatrix}
\ 1 & v & 0 \\
\ v & 1 & 0 \\
\ 0 & 0 & \frac{1-v}{2} \\
\end{bmatrix}$
$\hspace{0.6cm}
=76.923\times10^3\begin{bmatrix}
\ 1 & 0.3 & 0 \\
\ 0.3 & 1 & 0 \\
\ 0 & 0 & 0.35 \\
\end{bmatrix}$
$[\sigma]$=[D][e]
$\hspace{0.6cm}
=76.923\times10^3\begin{bmatrix}
\ 1 & 0.3 & 0 \\
\ 0.3 & 1 & 0 \\
\ 0 & 0 & 0.35 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ -1.44 \\
\ -5.38 \\
\ 3.03 \\
\end{Bmatrix}\times10^{-3}$
$\begin{Bmatrix}
\ \sigma_x \\
\ \sigma_y \\
\ z_{xy} \\
\end{Bmatrix}=$
$\begin{bmatrix}
\ 12.732 \\
\ 380.371 \\
\ 81.698 \\
\end{bmatrix}N/mm^2$