0
5.8kviews
Find nodal displacement and element stress for the bar as shown in figure using FEM. Take E=200GPa
1 Answer
0
257views
written 8.1 years ago by | • modified 8.1 years ago |

k1=AEL [ 1−1 −11]=200×200×103300 [ 1−1 −11]=103 [ 166.67−166.67 −166.67166.67]12
k2=AEL [ 1−1 −11]=400×200×103300 [ 1−1 −11]=103 [ 400−400 −400400]23
k1=AEL [ 1−1 −11]=400×200×103300 [ 1−1 −11]=103 [ 400−400 −400400]34
[K]=103 [ 166.67−166.6700 −166.67566.67−4000 0−400800−400 00−400400]
without considering Gap :
[k][u]=[f]
[ 166.67−166.6700 −166.67566.67−4000 0−400800−400 00−400400] [ u1 u2 u3 u4]= [ 0 0 75×103 0]
u2=0.449mm
u3=0.637mm
u4=0.637mm
As space provided for expansion is 3.5 mm that is more than actual deformation (u.0.637 mm)
stress
σ1=E(u2−u1)L1=29.93N/mm2
σ2=E(u3−u2)L2=18.8N/mm2
σ3=E(u4−u3)L3=0N/mm2
strain
e1=u4−u3L3=1.49×103
| e2u3−u3L2 =9.4×10−4|
e3=u4−u3L2=0
ADD COMMENT
EDIT
Please log in to add an answer.