$\hspace{2cm}A=\frac{\pi}{4}60_2$
$\hspace{2.2cm}=2826mw^2$
$\hspace{2.2cm}=0.002826w^2$
For element 1 & 2 :
$k_1=k_2=\frac{KA}{L}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$ $=\frac{260\times0.002826}{0.25}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$=2.26
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$hspace{2cm}\therefore k_1=$
$\begin{bmatrix}
\ 2.26 & -2.26 \\
\ -2.26 & 2.26 \\
\end{bmatrix}_2^1$ \&$k_2=$
$\begin{bmatrix}
\ 2.26 & -2.26 \\
\ -2.26 & 2.26 \\
\end{bmatrix}_1^2$
For element 3 & 4 :
$k_3=k_4 :\frac{KA}{L}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$=\frac{389\times0.002826}{0.25}$
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$=4.397
$\begin{bmatrix}
\ 1 & -1 \\
\ -1 & 1 \\
\end{bmatrix}$
$\hspace{0.3cm}\therefore k_3=$
$\begin{bmatrix}
\ 4.397 & -4.397 \\
\ -4.397 & 4.397 \\
\end{bmatrix}_4^3$ & $k_4=$
$\begin{bmatrix}
\ 4.397 & -4.397 \\
\ -4.397 & 4.397 \\
\end{bmatrix}$
Global stiffnes matrix,
[k]=
$\begin{bmatrix}
\ 2.26 & -2.26 & 0 & 0 & 0 \\
\ -2.26 & 4.52 & -2.26 & 0 & 0 \\
\ 0 & -2.26 & 6.657 & -4.397 & 0 \\
\ 0 & 0 & -4.397 & 8.794 & -4.397 \\
\ 0 & 0 & 0 & -4.397 & 4.397 \\
\end{bmatrix}$
Golbal matrix equation,
$\hspace{1.6cm}$[K]{T}={Q}
$\begin{bmatrix}
\ 2.26 & -2.26 & 0 & 0 & 0 \\
\ -2.26 & 4.52 & -2.26 & 0 & 0 \\
\ 0 & -2.26 & 6.657 & -4.397 & 0 \\
\ 0 & 0 & -4.397 & 8.794 & -4.397 \\
\ 0 & 0 & 0 & -4.397 & 4.397 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ T_1 \\
\ T_2 \\
\ T_3 \\
\ T_4 \\
\ T_5 \\
\end{Bmatrix}$=
$\begin{Bmatrix}
\ Q_1 \\
\ Q_2 \\
\ Q_3 \\
\ Q_4 \\
\ Q_5 \\
\end{Bmatrix}$
Boundary conditions :
$\hspace{1.6cm}Q_1=4000 w/w_2$
$\hspace{5cm} \& T_5 = 80^0 C$
$\hspace{1.6cm}Q=4000\times0.002826$
$\hspace{2cm}=11.304w$
$\therefore$
$\begin{bmatrix}
\ 2.26 & -2.26 & 0 & 0 & 0 \\
\ -2.26 & 4.52 & -2.26 & 0 & 0 \\
\ 0 & -2.26 & 6.657 & -4.397 & 0 \\
\ 0 & 0 & -4.397 & 8.794 & -4.397 \\
\ 0 & 0 & 0 & -4.397 & 4.397 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ T_1 \\
\ T_2 \\
\ T_3 \\
\ T_4 \\
\ 80 \\
\end{Bmatrix}$=
$\begin{Bmatrix}
\ 11.304 \\
\ 0 \\
\ 0 \\
\ 0 \\
\ Q_5 \\
\end{Bmatrix}$
Accounting for the knowntemp at node 5 the first four equation can be written as,
$\begin{bmatrix}
\ 2.26 & -2.26 & 0 & 0 \\
\ -2.26 & 4.52 & -2.26 & 0 \\
\ 0 & -2.26 & 6.66 & -4.40 \\
\ 0 & 0 & -4.40 & 8.80 & \\
\end{bmatrix}$
$\begin{Bmatrix}
\ T_1 \\
\ T_2 \\
\ T_3 \\
\ T_4 \\
\end{Bmatrix}$=
$\begin{Bmatrix}
\ 11.304 \\
\ 0 \\
\ 0 \\
\ 352.0 \\
\end{Bmatrix}$
$4 \times4$ matrix is not solve using calculator
$\therefore$ convert it into $3\times3$
$therefore R_2 \rightarrow R_1+R_2$
$\begin{bmatrix}
\ 2.26 & -2.26 & 0 & 0 \\
\ -2.26 & 4.52 & -2.26 & 0 \\
\ 0 & -2.26 & 6.66 & -4.40 \\
\ 0 & 0 & -4.40 & 8.80 & \\
\end{bmatrix}$
$\begin{Bmatrix}
\ T_1 \\
\ T_2 \\
\ T_3 \\
\ T_4 \\
\end{Bmatrix}$=
$\begin{Bmatrix}
\ 11.304 \\
\ 11.304 \\
\ 0 \\
\ 352.0 \\
\end{Bmatrix}$
Solve for unknown $T_2 T_3 \& T_4$
$\hspace{1cm} \therefore T_2 = 90.14^0C$
$\hspace{1.2cm}T_3=85.15^0C$
$\hspace{1.2cm}T_4=85.57^0C$
$\hspace{.9cm}substitule T_2,T_3, \&T_4,$
$\hspace{1.2cm}\therefore T_1=95.15^0C$
$Q_5=-11.38 w$
$\hspace{0.3cm}\frac{-11.30}{A}=\frac{-11.38}{0.002826}=-3998.7 w/m^2$