written 7.7 years ago by | • modified 2.8 years ago |
Mumbai University > Mechanical Engineering > Sem 6 > Finite Element Analysis
Marks: 5M
Year: Dec 2016
written 7.7 years ago by | • modified 2.8 years ago |
Mumbai University > Mechanical Engineering > Sem 6 > Finite Element Analysis
Marks: 5M
Year: Dec 2016
written 7.7 years ago by | • modified 7.7 years ago |
derivetion of shape function for 1-d linear element ;
let $\phi =A(\xi+1) (\xi - 1)$
At node 1, from (\xi+1) vanishen
$\hspace{2cm}\therefore \phi = A(\xi-1)$
At node :$\xi = - 1 and \phi_1=1$
$\hspace{2cm}\therefore 1=A(-2)$
$\hspace{3cm} \therefore A=\frac{-1}{2}$
$\hspace{2cm}\therefore \phi_1=\frac{-1}{2}(\xi-1)=\frac{1}{2}(1-\xi)$
similarly At node 2, from $(\xi-1)$ vanishen
$\hspace{2cm}\phi_2=(\xi+1)$
At node 2 : $\xi=1 and \phi_2=1$
$\hspace{4cm} A=\frac{1}{2}$
$\hspace{4cm} \therefore \phi_2=\frac{1}{2}(1+\xi)$
shope function for 1-D linear element,
$\phi_1=\frac{1}{2}(1- \xi) \hspace{1cm} \& \hspace{1cm} \phi_2=\frac{1}{2}(1+ \xi)$