$w_1,w_3,w_5,w_7,$ represent deflection at nodes 1,2,3, and 4 resp
$w_2,w_4,w_6,w_8,$ represent slopes at nodes 1,2,3, and 4 resp
Elemental matrix $ eq^n,$
$\frac{2EI}{h_e^3}$
$\begin{bmatrix}
\ 6 & -3he & -6 & -3he \\
\ -3he & 2he^2 & 3he & he^2 \\
\ -6 & 3he & 6 & 3he \\
\ -3he & he^2 & 3he & 2he^2 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_1^e \\
\ w_2^e \\
\ w_3^e \\
\ w_4^e \\
\end{Bmatrix}$=$\frac{fhe}{12}$
$\begin{Bmatrix}
\ 6 \\
\ -he \\
\ 6 \\
\ he \\
\end{Bmatrix}$+
$\begin{Bmatrix}
\ Q_1^e \\
\ Q_2^e \\
\ Q_3^e \\
\ Q_4^e \\
\end{Bmatrix}$
for element 1.
E = $ 2 \times mpa$
$= 2 \times 10^6 N/m^2$
$ I = \frac{bh^3}{12}=\frac{0.1\times0.12^3}{12}= 1.44 \times10^{-5} m^4$
7.2
$\begin{bmatrix}
\ 6 & -6 & -6 & -6 \\
\ -6 & 8 & 6 & 4 \\
\ -6 & 6 & 6 & 6 \\
\ -6 & 4 & 6 & 8 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_1 \\
\ w_2 \\
\ w_3 \\
\ w_4 \\
\end{Bmatrix}=0$
$\begin{Bmatrix}
\ 6 \\
\ -2 \\
\ 6 \\
\ +2 \\
\end{Bmatrix}$+
$\begin{Bmatrix}
\ 0 \\
\ 0 \\
\ 0 \\
\ 0 \\
\end{Bmatrix}$
$\begin{bmatrix}
\ 43.2 & -43.2 & -43.2 & -43.2 \\
\ -43.2 & 57.6 & 43.2 & 28.8 \\
\ -43.2 & 43.2 & 43.2 & 43.2 \\
\ -43.2 & 28.8 &43.2 & 57.6 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_1 \\
\ w_2 \\
\ w_3 \\
\ w_4 \\
\end{Bmatrix}=10^3$
$\begin{Bmatrix}
\ -0 \\
\ 0 \\
\ -50 \\
\ 0 \\
\end{Bmatrix}$
for element.2.
57.6
$\begin{bmatrix}
\ 6 & -3 & -6 & -3 \\
\ -3 & 2 & 3 & 1 \\
\ -6 & 3 & 6 & 3 \\
\ -3 & 1 & 3 & 2 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_3 \\
\ w_4 \\
\ w_5 \\
\ w_6 \\
\end{Bmatrix}=$
$\begin{Bmatrix}
\ 0 \\
\ 0 \\
\ 0 \\
\ 0 \\
\end{Bmatrix}+$
$\begin{Bmatrix}
\ 0 \\
\ 0 \\
\ 0 \\
\ 0 \\
\end{Bmatrix}$
$\begin{bmatrix}
\ 345.6 & -172.8 & -345.6 & -172.8 \\
\ -172.8 & 115.2 & 172.8 & 57.6 \\
\ -345.6 & 172.8 & 345.6 & 172.8 \\
\ -172.8 & 57.6 & 172.8 & 115.2 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_3 \\
\ w_4 \\
\ w_5 \\
\ w_6 \\
\end{Bmatrix}=$
$\begin{Bmatrix}
\ 0 \\
\ 0 \\
\ 0 \\
\ 0 \\
\end{Bmatrix}$
for element 3.
7.2
$\begin{bmatrix}
\ 6 & -6 & -6 & -6 \\
\ -6 & 8 & 6 & 4 \\
\ -6 & 6 & 6 & 6 \\
\ -6 & 4 & 6 & 8 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_5 \\
\ w_6 \\
\ w_7 \\
\ w_8 \\
\end{Bmatrix}=-4.166 \times 10^3$
$\begin{Bmatrix}
\ 6 \\
\ -2 \\
\ 6 \\
\ 12 \\
\end{Bmatrix}$
$\begin{bmatrix}
\ 43.2 & -43.2 & -43.2 & -43.2 \\
\ -43.2 & 57.6 & 43.2 & 28.8 \\
\ -43.2 & 43.2 & 43.2 & 43.2 \\
\ -43.2 & 28.8 & 43.2 & 57.6 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_5 \\
\ w_6 \\
\ w_7 \\
\ w_8 \\
\end{Bmatrix}= 10^3$
$\begin{Bmatrix}
\ -25 \\
\ 8.332 \\
\ -25 \\
\ -8.332 \\
\end{Bmatrix}$
$\begin{bmatrix}
\ 43.2 & -43.2 & -43.2 & -43.2 & 0 & 0 & 0 & 0 \\
\ -43.2 & 57.6 & 43.2 & 28.8 & 0 & 0 & 0 & 0 \\
\ -43.2 & 43.2 & 775.8 & -129.6 & -345.6 & -172.8 & 0 & 0 \\
\ -43.2 & 28.8 & -129.6 & 172.8 & 172.8 & 57.6 & 0 & 0 \\
\ 0 & 0 & -345.6 & 172.8 & 388.8 & 129.6 & -43.2 & 43.2 \\
\ 0 & 0 & -172.8 & 57.6 & 129.6 & 172.8 & 43.2 & 28.8 \\
\ 0 & 0 & 0 & 0 & -43.2 & 43.2 & 43.2 & 43.2 \\
\ 0 & 0 & 0 & 0 & -43.2 & 28.8 & 43.2 & 57.6 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_1 \\
\ w_2 \\
\ w_3 \\
\ w_4 \\
\ w_5 \\
\ w_6 \\
\ w_7 \\
\ w_8 \\
\end{Bmatrix}$
$\begin{Bmatrix}
\ 0 \\
\ 0 \\
\ -50 \\
\ 0 \\
\ -25 \\
\ 8.33 \\
\ -25 \\
\ 8.332 \\
\end{Bmatrix}$
Boundary condition : $w_1=0, w_2 = 0, w_7=0, $
$\begin{bmatrix}
\ 775.8 & -129.6 & -345.6 & -172.8 & 0 \\
\ -129.6 & 172.8 & 172.8 & 57.6 & 0 \\
\ -345.6 & 172.8 & 388.8 & 129.6 & 0 \\
\ -172.8 & 57.6 & 129.6 & 172.8 & 28.8 \\
\ 0 & 0 & -43.2 & 28.8 & 57.6 \\
\end{bmatrix}$
$\begin{Bmatrix}
\ w_3 \\
\ w_4 \\
\ w_5 \\
\ w_6 \\
\ w_8 \\
\end{Bmatrix}= 10^3$
$\begin{Bmatrix}
\ -50 \\
\ 0 \\
\ -25 \\
\ 8.332 \\
\ -8.332 \\
\end{Bmatrix}$
$w_3= -0.192 \times 10^3 $=-192 m (deflection)
$w_4 = 0.2997 \times 10^3$ = 299.7 rad (slope)
$w_5 = 0.5336 \times 10^3 $= -533.6 m (deflection)
$w_6 = 0.2698 \times 10^3 $= 269.8 rad (slope)
$w_8 = 0.6798 \times 10 ^3 $=679.8 rad (slope)