written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2016
written 7.7 years ago by | modified 2.8 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: May 2016
written 7.7 years ago by |
Given:
VGS(th) = $V_T$ = 3V
Id(ON) = 5mA
VGS(ON) = 6V
Solution:
We know that,
$IDS = k_n(VGS - V_T)^2$
$k_n = \frac{IDS(ON)}{[VGS(ON) - V_T]^2} = \frac{5mA}{[6-3]^2}$
$k_n = 0.55mA/V^2$
Hence, $IDS = 0.55mA/V^2 \times (VGS - 3)^2$ .........(1)
But voltage divider biasing equation is,
$VR_2 - VGS - IDS \times R_S = 0$
Hence, $VGS = VR_2 - IDS \times 0.75K\Omega$
$VR_2 = \frac{VDD \times R_2}{R_1 + R_2} = \frac{24 \times 6.8M\Omega}{10M\Omega + 6.8M\Omega}$
$VR_2 = 9.71V$
Hence, $VGS = 9.71 - IDS \times 0.75K\Omega$ ........(2)
Put equation (2) in (1),
$IDS = 0.55mA/V^2 \times (9.71 - IDS \times 0.75K\Omega - 3)^2$
$IDS = 0.55m \times (6.71 - IDS \times 0.75K\Omega)^2$
$IDS = 4.94mA or 16.15mA$
IDS = 4.94mA | IDS = 16.15mA |
---|---|
$VGS = 9.71 - IDS \times 0.75K\Omega$ | $VGS = 9.71 - IDS \times 0.75K\Omega$ |
$VGS = 6.005V \gt VGS(T)$ | $VGS = -2.4025 \lt VGS(T)$ |
Select IDS with which VGS is greater than or equal to $VGS(T)$
Hence, $IDSq = 4.94mA$
with $IDSq = 4.94mA$ in equation (2),
$VGSq = 6.005V$
Apply KVL from VDD to Drain terminal,
$V_D = VDD - IDSq \times R_D$
$V_D = 24 - 4.94mA \times 2.2K\Omega = 13.132V$
Apply KVL from Source to ground terminal,
$V_S = IDSq \times R_S = 4.94mA \times 0.75K\Omega$
$V_S = 3.70V$
Answers: