Apply principal of minimum , potential Energy,
$\pi$ = spring Energy + potential Energy .
$\hspace{0.3cm}=\frac{1}{2} k _1 (u_2-u_1)^2+ \frac{1}{2} k_2(u_5-u_2)^2+\frac{1}{2} k_3(u_3-u_2)^2$
$\hspace{1.3cm} +\frac {1}{2} k_4 (u_4-u_3)^![enter image description here][2]2-f_1 u_3 -f_2 u_5$
$\hspace{0.3cm}$But $u_1 = u_4 =0 $
$\pi = \frac{1}{2} k_1 (u_2)^2+\frac{1}{2} k_2 (u_5-u_2)^2+\frac{1}{2}k_3(u_3-u_2)^2$
$\hspace{1.3cm} = \frac{1}{2} k_4 .u_3^2 - f_1 u_3 - f_2 u_5$
$\hspace{1.3cm} \frac{\partial \pi}{\partial u _1}$
$\therefore \frac{\partial \pi}{\partial u_2} = k_1 u_2 +k_2 (u_5-u_2)(-1) + k_3 (u_3-u_2)(-1) = 0$
$\hspace{1.2cm} (k_1+k_2+k_3)u_2 - k_3 u_3 - k_5 u_5 = 0 $
$\therefore 550.u_2 - 150u_3 - 300 u_5 = 0 \hspace{2cm} ---(1)$
$\frac{\partial \pi}{\partial u_3} = 0+0+k_3 (u_3-u_2)(1) + k_4 u_3 - f_1 = 0 $
$\hspace{1cm}-k_3u_2 +(k_3 +k_4) u_3 = f_1 $
$ \hspace{1cm}-150u_2+350u_3 = 200 \times 10^3 \hspace{2cm}---(2)$
$\frac{\partial \pi}{\partial u_5} = 0+k_2(u_5-u_2) = f_2$
$\hspace{1cm}-k_2 u_2 + k_2 u_5 = f_2 $
$\hspace{1cm}--300u_2 + 300u_5 = 100 \times 10^3 \hspace{2cm}---(3)$
Eq' (1)(2) & (3) in matrix from,
$\begin{bmatrix}
\ 550 & -150 & -300 \\
\ -150 & 350 & 0 \\
\ -300 & 0 & 300 \\
\end{bmatrix}
\begin{bmatrix}
\ u_2 \\
\ u_3 \\
\ u_5 \\
\end{bmatrix}
= \begin{bmatrix}
\ 0 \\
\ 200\times10^3 \\
\ 100 \times 10_3 \\
\end{bmatrix}$
$\therefore u_2 = 1000 mm$
$\hspace{0.3cm}u_3 = 1000 mm$
$\hspace{0.3cm} u_5 = 1333.33 mm.$