0
25kviews
Find the core radius necessary for single mode operation at 820nm of step index fiber with $n_1=1.482$ and $n_2=1.474$
1 Answer
2
4.0kviews
written 7.8 years ago by |
Given: $ λ =820nm \\ n_1=1.482 \\ n_2=1.474 \\ V = 2.405 \text {(single mode step index)} $
To Find:
1) Core radius (a)
2) Numerical aperture (N.A)
3) acceptance angle (Өa)
4) solid angle (τ)
Solution:
$\Rightarrow N.A = \sqrt{n_1^2-n_2^2 } \\ =\sqrt{1.482^2-1.474^2 } \\ N.A= 0.153 $
Numerical aperture $(N.A) =0.153$
$\Rightarrow V = \dfrac {2πa(N.A)}λ \\ 2.405 = \dfrac {2π*a*0.153}{820*10^{-9}} \\ a = 2.051µm$
Core radius $(a) = 2.051µm$
Core radius $(a) = 2.051µm \\ \Rightarrow N.A = \sin Өa \\ 0.153=\sin Өa \\ Өa = 8.8°$
Acceptance angle $(Өa) = 8.8°$
$\Rightarrow τ =π(N.A)^2 \\ = 3.14* (0.153)^2 \\ τ =0.073\text { radians}$
Solid angle $(τ) = 0.073$ radians
ADD COMMENT
EDIT
Please log in to add an answer.