0
1.5kviews
Using Direct Stiffness method determine the nodal displacements of stepped 10 bar shown in figure .Take, G = 100 GPa.

enter image description here

1 Answer
1
6views

enter image description here

K=fracGJL[ 11 11]k1=100×103×π32×1004450[ 11 11]=106[ 2181.72181.7 2181.72181.7]k2=100×103×π32×804400[ 11 11]=106[ 1005.31005.3 1005.31005.3]k3=100×103×π32×504500[ 11 11]=106[ 122.7122.7 122.7122.7]

Global matrix equation:

106[ 2181.72181.700 2181.731871005.30 01005.31128122.7 00122.7122.7]{ θ1 θ2 θ3 θ4}{ T1T2T3T4}

B.C:- θ1=θ4=0T2=3×106Nmm,T3=2×106Nmm

106[ 2181.72181.700 2181.731871005.30 01005.31128122.7 00122.7122.7]{ θ θ2 θ3 0}{ T132T4}

218.7θ2=T13187θ21005.3θ3=31005.3θ2+1128θ3=2122.7θ3=T4

θ2=5.314×104radθ3=1.3×103radT1=1.159KN.mT4=0.159KN.mT=1.159+32+0.159=0

Please log in to add an answer.