0
1.5kviews
Using Direct Stiffness method determine the nodal displacements of stepped 10 bar shown in figure .Take, G = 100 GPa.

enter image description here

1 Answer
1
6views

enter image description here

$K = frac{GJ}{L} \begin{bmatrix} \ 1 & -1 \\ \ -1 & 1 \\ \end{bmatrix}\\ k_1 = \frac{100 \times 10^3 \times \frac{\pi}{32} \times 100^4}{450} \begin{bmatrix} \ 1 & -1 \\ \ -1 & 1 \\ \end{bmatrix} = 10^6 \begin{bmatrix} \ 2181.7 & -2181.7 \\ \ -2181.7 & 2181.7 \\ \end{bmatrix}\\ …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.