0
1.5kviews
Using Direct Stiffness method determine the nodal displacements of stepped 10 bar shown in figure .Take, G = 100 GPa.
1 Answer
written 8.1 years ago by |
K=fracGJL[ 1−1 −11]k1=100×103×π32×1004450[ 1−1 −11]=106[ 2181.7−2181.7 −2181.72181.7]k2=100×103×π32×804400[ 1−1 −11]=106[ 1005.3−1005.3 −1005.31005.3]k3=100×103×π32×504500[ 1−1 −11]=106[ 122.7−122.7 −122.7122.7]
Global matrix equation:
106[ 2181.7−2181.700 −2181.73187−1005.30 0−1005.31128−122.7 00−122.7122.7]{ θ1 θ2 θ3 θ4}{ T1T2T3T4}
B.C:- θ1=θ4=0T2=3×106N−mm,T3=−2×106N−mm
106[ 2181.7−2181.700 −2181.73187−1005.30 0−1005.31128−122.7 00−122.7122.7]{ θ θ2 θ3 0}{ T13−2T4}
−218.7θ2=T13187θ2−1005.3θ3=3−1005.3θ2+1128θ3=−2−122.7θ3=T4
θ2=5.314×10−4radθ3=−1.3×10−3radT1=−1.159KN.mT4=0.159KN.m∑T=−1.159+3−2+0.159=0