0
1.0kviews
Solve differential equation

Solve following differential equation

d2ydx2+3xdydx6y=0;0×1

BCs : y (0) = 0 and y' (1) = 0.1; Find y(0.2) using variational method and Compare with exact solution

Mumbai University > Mechanical Engineering > Sem 6 > Finite Element Analysis

Marks: 12M

Year: Dec 2015

1 Answer
0
1views

y=C0+C1x+C2x2+C3x3y=C1x+2C2x+3C3x2

Apply B.C (1) : y(0) = 1

C0=1

Apply B.C. (2) :y'(1) = 0.1

0.1=C1+2C2+3C3C1=0.12C23C3y=1+(0.12C23C3)x+C2x2+C3x3y=1+0.1x+C2(x22x)+C3(x33x)dydx=0.1+C2(2x2)+C3(3x23)d2ydx2=2C2+6xC3

Residue,

R=d2ydx2+3xdydx6yR=2C2+6xC3+3x[0.1+C2(2x2)+C3(3x23)]6[1+0.1x+C2(x22x)+C3(x33x)]R=C2(6x+2)+C3(3x3+15x)0.3x6

Weighted integral form,

10WiRdx=010Wi[C2(6x+2)+C3(3x3+15x)0.3x6]dx=0

Galerkin Method:

W1=(x22x) and W2=(x33x)

For i = 1

10(x22x)[C2(6x+2)+C3(3x3+15x)0.3x6]dx=03.833C26.95C3+4.125=03.833C2+6.95C3=4.125(1)

For i = 2

10(x33x)[C2(6x+2)+C3(3x3+15x)0.3x6]dx=07.3C213.371C3+7.74=07.3C2+13.371C3=7.74(2)

From (1) and (2)

C2=2.64 and C3=0.862y=1+0.1x+2.64(x22x)0.862(x33x)y(0.2)=0.58

Please log in to add an answer.