written 8.1 years ago by
teamques10
★ 69k
|
•
modified 8.1 years ago
|
y=C0+C1x+C2x2+C3x3y′=C1x+2C2x+3C3x2
Apply B.C (1) : y(0) = 1
∴C0=1
Apply B.C. (2) :y'(1) = 0.1
0.1=C1+2C2+3C3∴C1=0.1−2C2−3C3∴y=1+(0.1−2C2−3C3)x+C2x2+C3x3y=1+0.1x+C2(x2−2x)+C3(x3−3x)dydx=0.1+C2(2x−2)+C3(3x2−3)d2ydx2=2C2+6xC3
Residue,
R=d2ydx2+3xdydx−6yR=2C2+6xC3+3x[0.1+C2(2x−2)+C3(3x2−3)]−6[1+0.1x+C2(x2−2x)+C3(x3−3x)]R=C2(6x+2)+C3(3x3+15x)−0.3x−6
Weighted integral form,
1∫0WiRdx=01∫0Wi[C2(6x+2)+C3(3x3+15x)−0.3x−6]dx=0
Galerkin Method:
W1=(x2−2x) and W2=(x3−3x)
For i = 1
1∫0(x2−2x)[C−2(6x+2)+C3(3x3+15x)−0.3x−6]dx=0−3.833C2−6.95C3+4.125=03.833C2+6.95C3=4.125−−−−−−(1)
For i = 2
1∫0(x3−3x)[C2(6x+2)+C3(3x3+15x)−0.3x−6]dx=0−7.3C−2−13.371C3+7.74=07.3C2+13.371C3=7.74−−−−−−(2)
From (1) and (2)
C2=2.64 and C3=−0.862∴y=1+0.1x+2.64(x2−2x)−0.862(x3−3x)∴y(0.2)=0.58