written 7.7 years ago by
teamques10
★ 68k
|
•
modified 7.7 years ago
|
$y = C_0 + C_1x + C_2 x^2 + C_3 x^3\\
y' = C_1x + 2C_2x + 3C_3x^2$
Apply B.C (1) : y(0) = 1
$\therefore C_0 = 1$
Apply B.C. (2) :y'(1) = 0.1
$0.1 = C_1 + 2C_2 +3C_3\\
\therefore C_1 = 0.1 - 2C_2 - 3C_3\\
\therefore y = 1 + (0.1 - 2C_2 - 3C_3)x + C_2x^2 + C_3x^3\\
y = 1 + 0.1x + C_2(x^2 - 2x)+ C_3(x^3 - 3x)\\
\frac{dy}{dx} = 0.1 + C_2(2x - 2) + C_3(3x^2 - 3)\\
\frac{d^2y}{dx^2} = 2C_2 + 6xC_3$
Residue,
$R = \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} - 6y\\
R = 2C_2 + 6x C_3 + 3x [0.1 + C_2(2x - 2) + C_3(3x^2 - 3)] - 6 [1 + 0.1x + C_2(x^2 - 2x) + C_3(x^3 - 3x)]\\
R = C_2(6x +2) + C_3 (3x^3 + 15 x) - 0.3x - 6$
Weighted integral form,
$\int\limits_0^1 W_i R dx = 0\\
\int\limits_0^1 W_i [C_2(6x+2)+C_3(3x^3 + 15 x) - 0.3x - 6]dx =0$
Galerkin Method:
$W_1 = (x^2 - 2x)$ and $W_2 = (x^3 - 3x)$
For i = 1
$\int\limits_0^1(x^2 - 2x)[C-2(6x + 2)+ C_3(3x^3 + 15x) - 0.3x - 6]dx = 0\\
- 3.833C_2 - 6.95C_3 + 4.125 = 0\\
3.833C_2 + 6.95 C_3 = 4.125 \hspace{2cm} ------ (1)$
For i = 2
$\int\limits_0^1 (x^3 - 3x)[C_2(6x + 2) + C_3(3x^3+15x)- 0.3x - 6]dx = 0\\
-7.3C-2 - 13.371C_3 + 7.74 = 0\\
7.3 C_2 + 13.371 C_3 = 7.74 \hspace{2cm} ------ (2)$
From (1) and (2)
$C_2 = 2.64$ and $C_3 = -0.862\\
\therefore y = 1 + 0.1x + 2.64(x^2 - 2x) - 0.862(x^3 - 3x)\\
\therefore y(0.2) = 0.58$