0
6.5kviews
What are serendipity elements?Derive and graphically represent interpolation functions for 8 nodded Quadrilateral elements.

Mumbai University > Mechanical Engineering > Sem 6 > Finite Element Analysis

Marks: 10M

Year: May 2015

1 Answer
0
183views

Serendipity Elements :- Serendipity elements are the rectangular elements which have no interior nodes. i.e all nodes lie on the boundary of the elements.

Consider quadrilateral element with eight nodes,

enter image description here $i) 2 - 3 : \xi \hspace{1.5cm} \therefore 1 - \xi = 0\\ ii) 3 - 4 : \eta = 1 \hspace{1.5cm} \therefore 1 - \eta = 0$

$iii) 8 - 5 : y = mx + c$

$\eta = \bigg( \frac{0 - (-1)}{-1-0} \bigg) \xi + (-1)\\ \eta = - \xi - 1\\ \therefore \eta + \xi + 1 = 0$

To find $\phi_1$, $\phi_1$ vanishes along lines,

Let, $\phi_1 = A(1 - \xi) (1 - \eta)(1 + \xi + \eta)$

At node 1: $\phi_1 = 1, \xi = -1$ and $\eta = -1$

$\therefore 1 = A(2)(2)(1-1-1)\\ A = -\frac{1}{4}\\ \therefore \phi_1 = - \frac{1}{4} (1 - \xi)(1 - \eta)(1 + \eta + \xi)$

Similarly,

$\phi_2 = - \frac{1}{4} (1+ \xi)(1 - \eta) (1 + \eta - \xi)\\ \phi_3 = - \frac{1}{4}(1 + \xi)(1 + \eta)(1 - \eta - \xi)\\ \phi_4 = - \frac{1}{4} (1 - \xi)(1 + \eta)(1 + \xi - \eta)$

To find $\phi_5, \phi_5$ vanishes along,

$i) 2 - 3 : \xi= 1 \hspace{1.5cm} \therefore 1 - \xi = 0\\ ii) 3 - 4 : \eta = 1 \hspace{1.5cm} \therefore 1 - \eta = 0\\ iii) 4 - 1 : \xi = -1 \hspace{1.5cm} \therefore 1 + \xi = 0$

$\therefore \phi_5 = A(1 - \xi)(1 - \eta)(1 + \xi)$

At node 5, $\phi_5 = 1, \xi = 0$ and $\eta = -1$

1 = A(1)(2)(1) $A = \frac{1}{2}\\ \phi_5 = \frac{1}{2}(1 - \xi^2)(1 - \eta)$

Similarly,

$\phi_6 = \frac{1}{2}(1 + \xi)(1 - \eta^2)\\ \phi_7 = \frac{1}{2}( 1 - \xi^2)(1 + \eta)\\ \phi_8 = \frac{1}{2}(1 - \xi)(1 - \eta^2)$

Please log in to add an answer.