written 7.8 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: Dec 2016
written 7.8 years ago by | modified 2.9 years ago by |
Mumbai University > Electronics Engineering > Sem 4 > Discrete Electronic Circuits
Marks: 10M
Year: Dec 2016
written 7.8 years ago by |
Given: $\beta$ = 100, Vbe = 0.7V
For DC analysis, all the coupling capacitor acts as open circuit as shown in below circuit diagram. We need to find equivalent circuit at base terminal (Rth & Vth).
Figure 1: Circuit diagram without coupling capacitor and equivalent circuit diagram
Vth can be found using voltage divider method:
$Vth = \frac{10 \times 12.2k}{12.2k + 56k}$
$Vth = 1.78 V$
$Rth = 12..2k || 56k = 10.01 k \Omega$
Apply KVL from base to emitter junction,
$Vth - Rth I_B - Vbe - R_EI_E = 0 $ ----(1)
where $I_E = I_C + I_B = \beta I_B + I_B = I_B(1+\beta)$
Substitute in equation (1)
$Vth - Rth I_B - Vbe - R_EI_B(1+\beta) = 0 $
$I_B = \frac{Vth - Vbe}{Rth + R_E(1+\beta)}$
$I_B = \frac{1.78 - 0.7}{10.01k + (1+100)0.4k}$
$I_B = 21.42 \mu A $
$Icq = \beta I_B = 100 \times 21.42 \mu A$
$Icq = 2.142 mA$
Apply KVL from Vcc to Ground through collector to emitter,
$Vcc - I_C R_C - Vceq - I_E R_E = 0$ ----(2)
$I_E = I_B + I_C = 2.142 mA + 21.42 \mu A$
$I_E = 2.16 mA$
Substitute $I_E$ value in equation (2),
$Vcc - I_C R_C - I_E R_E = Vceq$
$10 - 2k\Omega \times 2.142mA - 2.16mA \times 0.4k\Omega = Vceq$
$Vceq = 4.852V$
$V_C = Vcc - I_C R_C$
$V_C = 10 - 2.142mA \times 2k\Omega = 5.716V$
$V_E = I_E R_E = 2.16mA \times 0.4k \Omega = 0.864$
Answers: