written 7.9 years ago by | • modified 4.1 years ago |
(i) Time Shifting.
(ii) Convolution in time domain.
written 7.9 years ago by | • modified 4.1 years ago |
(i) Time Shifting.
(ii) Convolution in time domain.
written 7.9 years ago by |
(i) Time Shifting: State and prove
Example:
Obtain the Fourier transform of the rectangular pulse as shown below:
Solution:
t=-T/2 to t =+ T/2 is expressed as follows:
x(t) =A rect (t/T)………….(1)
$x_1$(t) =A rect [(t-T/2)/T ]……………….(2)
F[$x_1$(t)] = $X_1$(f) = $e^{-j2πfT/2}$ .X(f)
= $e^{-jπfT}$. AT sin c (fT)
$X_1$(f) = AT $e^{-jπfT}$ sinc (fT)………….Ans
(ii) Convolution Theorems
The convolution theorem states that convolution in time domain corresponds to multiplication in frequency domain and vice versa:
F[x(t) * y(t) ] = X(jw) Y(jw) (a)
F[x(t) y(t) ] = X(jw) * Y(jw) (b)
Proof of (a):
F[x(t) * y(t)]
:
$∫_{-\infty}^{\infty}$ [ $∫_{-\infty}^{\infty} x(τ) y(t-τ) dτ] {e^{-jwt}} dt$
:
$∫_{-\infty}^{\infty}$ x(τ) [ $∫_{-\infty}^{\infty} y(t-τ) {e^{-jwt}} dt] dτ $
Proof of (b):
F[x(t) y(t)] : $∫_{-\infty}^{\infty}$ x(t) y(t) $e^{-jwt}$ dt
: $∫_{-\infty}^{\infty}$ [1/2π $∫_{-\infty}^{\infty}$ X(jw') $e^{jw't}$ dw'] y(t) $e^{jwt}$ dt
: 1/2π $∫_{-\infty}^{\infty}$ X(jw') [ $∫_{-\infty}^{\infty}$ y(t) $e^{jw't}$ $e^{jwt}$ dt] dw'
: 1/2π $∫_{-\infty}^{\infty}$ X(jw') [ $∫_{-\infty}^{\infty}$ y(t) $e^{-j(w-w')t}$ dt] dw'
: 1/2π $∫_{-\infty}^{\infty}$ X(jw') Y(j(w-w'))dw' = X(jw) * Y(jw)
Example:
Find the convolution, z(t), of the following two signals, x(t) and y(t), by using (a) the integral representation of the convolution equation and (b) multiplication in the Laplace domain.
The signal y(t) is simply the Heaviside step, u(t).
The signal x(t) is given by the following infinite sinusoid, $x_0$(t), and windowing function, $x_w$ (t):
$x_0$(t) =sin (t)
$x_w$(t)=u(t)-u(t-2π)
Thus, the convolution we wish to perform is therefore:
z (t) =x(t)*y(t)
z (t) =sin(t)[u(t)- u(t-2π)]*u(t)
z(t)=[sin(t)u(t)-sin(t) u(t-2π)]*u(t)
From the distributive law:
z(t)= sin(t)u(t)u(t)-sin(t) u(t-2π)]u(t)