0
5.8kviews
Find the new vertices of a triangle.

A triangle has vertices A(0,0) B(4,0) and C(2,3). It is translated by 4 units in X-direction and 2 Y units in Y-direction. It is then rotated by $90^0$ in anticlockwise direction about the new position of point C. Find the new vertices of a triangle.

Mumbai University > Mechanical Engineering > Sem 7 > CAD CAM CAE

Marks: Marks

Year: Dec 2016

1 Answer
4
751views

A triangle PQR has its vertices at P(0,0), Q(4,0), and R(2,3) . It is to be translate by 4 units in X-direction, and 2 units in Y-direction, then it is to be rotated in anticlockwise direction about the new position of point R through 90 Degree. Find the new position of the triangle.

Refer Fig 1.12.8.1

$\triangle PQR = \begin{bmatrix} 0&0&1 \\ 4&0&1 \\ 2&3&1 \end{bmatrix}$

a) To be translated by $t_x=4$ and $t_y=2$

$\triangle P'Q'R'$ $= \triangle PQR.T \\ =\begin{bmatrix} 0&0&1 \\ 4&0&1 \\ 2&3&1 \end{bmatrix} \begin{bmatrix}1&0&0 \\ 0&1&0 \\ 4&2&1 \end{bmatrix} \\ =\begin{bmatrix} 4&2&1 \\8&2&1 \\ 6&5&1 \end{bmatrix}$

enter image description here

Besides a rotary arrangement, a twin table arrangement can also be used for work loading as shown in Linear Twin Pallet System . the working of this system is similar to that of a rotary pallet system. However, the work tables in this case are not indexed in rotary form.

enter image description here

Another form of a work changer is the one having a conveying system to continuously feed the machine with the work-piece. In places where work loading is extremely sensitive, robots can also be used for automated work changing.

enter image description here

b) To be rotated in anticlockwise direction about the new point R' (6,5) through $90^0$

$\triangle P''Q''R''$ $=\triangle P'Q'R'.T.R.T^{-1} \\ = \begin{bmatrix} 4&2&1 \\8&2&1 \\ 6&5&1 \end{bmatrix} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ -6&-5&1 \end{bmatrix} \begin{bmatrix} \cos 90 & \sin 90 & 0 \\ -\sin 90 & \cos 90 & 0 \\ 0&0&1\end{bmatrix}\begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 6&5&1 \end{bmatrix} \\ =\begin{bmatrix} 4&2&1 \\ 8&2&1 \\ 6&5&1 \end{bmatrix} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ -6&-5&1 \end{bmatrix} \begin{bmatrix}0&1&0 \\ -1&0&0 \\ 0&0&1 \end{bmatrix}\begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 6&5&1 \end{bmatrix} \\ =\begin{bmatrix} 4&2&1 \\ 8&2&1 \\ 6&5&1 \end{bmatrix} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ -6&-5&1 \end{bmatrix} \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 6&5&1 \end{bmatrix} \\ =\begin{bmatrix} 4&2&1 \\8&2&1 \\ 6&5&1 \end{bmatrix} \begin{bmatrix} 0&1&0 \\ -1&0&0 \\ 11&-1&1\end{bmatrix} \\ = \begin{bmatrix}9&3&1 \\ 9&7&1 \\ 6&5&1\end{bmatrix}$

New vertices are P''(9,3) Q''(9,7) R''(6,5)

Please log in to add an answer.