written 7.8 years ago by | • modified 7.8 years ago |
Mumbai University > Electronics and telecommunication engineering > Sem 3 > Analog electronics 1
Marks: 4M
Years: Dec 14
written 7.8 years ago by | • modified 7.8 years ago |
Mumbai University > Electronics and telecommunication engineering > Sem 3 > Analog electronics 1
Marks: 4M
Years: Dec 14
written 7.8 years ago by |
Given:$β_1$ = 50, $β_1$ = 100, $V_C$ = 5V
Calculation with $β_1$ = 50
Step1: Find $I_B$ and $I_c$
Apply KVL to the base loop to write
10 V = $I_EB$ + $I_B R_B$
$I_B$ = $\frac{10-I_EB}{R_B}$ = $\frac{(10-0.7)}{(100 X 10^3 )}$
$I_B$ = 93 μA
$I_C$ = β X $I_B$ = 50 X 93X $10^(-6)$ = 4.65 mA
Step2: Find $R_C$
$V_C$= 5V (Given)
But $V_C$= $I_C$ X $R_C$
5 = 4.65 X $10^(-3)$ X $R_C$
$R_C$ = 1075.3 Ω
ii)Calculation with β_1 = 50
The value of $I_B$ remains unchanged
$I_B$ = 93 μA
New value of collector current is given by,
I_C= β X $I_B$ = 100 X 93X $10^(-6)$ = 9.3 mA
Find $R_C$:
$R_C=\frac{V_C}{I_C} = \frac{(5 V)}{(9.3 mA)}$= 537.6 Ω