Given
P = 25H.P
N = 850 rpm
i = 2.5
C15
C30
$\alpha = 20^0$
$[\sigma_b] = 85N/mm^2$
$[\sigma_c] = 620 N/mm^2$
Solution:
No. of teeth on pinion $z_1 = \frac{2}{sin^2 \alpha} = 18$
No. of teeth on wheel $z_2 = i z_1 = 46$
corrected i = 2.55
$Y_1 = \pi \bigg[0.154 - \frac{0.912}{z_1}\bigg] = 0.3246$
$Y_2 = \pi \bigg[0.154 - \frac{0.912}{z_2} \bigg] = 0.4215$
Strength of pinion = $85 x 0.3246 = 27.591 N/mm^2$
Strength of wheel = $35.829 N/mm^2$
Calculate of module based on beam strength
$m \geq 1.26 \sqrt[3]{\frac{[]M_t}{[\sigma_b] \psi Y_1 z_1}}$
$[M_t] = 1.5 \times \frac{18650 \times 60}{2 \pi 850} = 314.284 \times 10^3 N-mm$
$m \geq 5.021$
m = 6 (PSG 8.2)
Checking for contact stress
$\sigma_c = 0.74 \frac{i + 1}{a} \sqrt{\frac{i+1}{ib} E [M_t]}$
$E = 2.15 \times 10^5 N/mm^2$ (PSG 814)
$a = m(z_1 + z_2)/2 = 192 mm$
$\sigma_c = 541 N/mm^2$
$\sigma_c \gt [\sigma_c]$
safe
Principal dimensions
module m = 6 mm
centre distance a = 192 m
Bottom clearance c = 0.25m = 1.5mm
tooth depth h = 2.25m m = 13.5 mm
PCD $d_1 = mz_1 = 108 \hspace{1cm} d_2 = mz_2 = 276$
ACD $d_{a1} = (z_1 + 2f_0)m = 120 \hspace{1cm} d_{a2} = (z_2 + 2f_0)m = 288mm$
DCD $d_{f_1} = (z - 2f_0)m-2c = 93\hspace{1cm} d_{f_2} = 261 mm$