written 7.8 years ago by | • modified 7.8 years ago |
Mumbai University > Electronics and telecommunication engineering > Sem 3 > Analog electronics 1
Marks: 10M
Years: May 16
written 7.8 years ago by | • modified 7.8 years ago |
Mumbai University > Electronics and telecommunication engineering > Sem 3 > Analog electronics 1
Marks: 10M
Years: May 16
written 7.8 years ago by |
Step1: Draw the the Thevenin’s equivalent circuit
I = $\frac{(V_CC+ V_EE)}{(R_1 + R_2 )} = \frac{(5+ 5)}{(12k +2k)} = \frac{(10 V)}{(14 KΩ)} $= 0.714 mA
$V_th = IR_2 - V_EE $= 0.714 mA x 2 kΩ - 5 V
= -3.5714 V
And $R_B$ = $R_1 ||R_2$ = 12k||2k = 1.714kΩ
Step2: Calculate $I_B$
By redrawing network as shown in fig and apply KVL,
Substituting $I_E = (1+β) I_B$ gives,
$V_EE-V_th - V_BE- (1+β) I_B R_E - I_B R_th = 0$
$I_B = \frac{(V_EE -V_th - V_BE)}{( R_th+ (1+β) R_E )}$
= $\frac{(5-3.571-0.7)}{(1.714 kΩ+101x0.5kΩ)} = \frac{(0.729 V)}{(52.214 kΩ)}$ = 13.96 µA
Step3: Calculate $I_CQ$ and $V_CEQ$
$I_(C Q)= βI_B $= 100 x 13.96µA = 1.396 mA
$I_E =(1+β) I_B$ = 101 x 13.96 µA = 1.409 mA
$V_CEQ= V_CC-V_EE - I_CQ R_C -I_E R_E = 10 - 1.396 x 10^(-3) x 5 x 10^3 - 1.409 x10^(-3) x 0.5 x 10^3$
= 10 – 7.6845
= 2.315 V
$V_CEQ$ = 2.315 V
Step4: Draw DC load line
For Load Line, consider $V_CEQ$ = 0
$V_CEQ= V_CC-V_EE - I_CQ R_C -I_E R_E$
0 = $V_CC-V_EE - I_CQ R_C -I_E R_E$
= 10 - $ I_(C ) x 5 x 10^3 -1.409 x10^(-3) x 0.5 x 10^3$
$I_(C )= \frac{(10- 1.409 x 10^(-3) x 0.5 x 10^3)}{(5 x 10^3 )} = \frac{(10-0.7045)}{(5 x 10^3 )} = \frac{9.2955}{(5 x 10^3 )}$
= 1.85 mA
Hence, $I_(C)$=1.85 mA
And $V_CE= V_(CC )$= 10 V
The load line and the calculated Q point are shown in fig.