written 7.8 years ago by | • modified 7.8 years ago |
The transition probability matrix of Markov Chain is
Find the limiting probabilities.
written 7.8 years ago by | • modified 7.8 years ago |
The transition probability matrix of Markov Chain is
Find the limiting probabilities.
written 7.8 years ago by |
To find the limiting probabilities i.e $lim_{n→∞} {P^n}$
Let the limiting probabilities be π=[$π_1 π_2 π_3$ ]. Then we have πP=π such that $∑π_i=1$
∴[$π_1 π_2 π_3$ ]=[$π_1 π_2 π_3$ ]
$0.5π_1+0.3π_2+0.2π_3=π_1$ (1)
$0.4π_1+0.4π_2+0.3π_3=π_2$ (2)
$0.1π_1+0.3π_2+0.5π_3=π_3 $ (3)
We know$∑π_i=1$
$π_1+ π_2+ π_3=1$ (4)
i.e $ π_3=1-π_1-π_2$
Substituting the above value in equation (1) and (2)
$0.5π_1+0.3π_2+0.2(1-π_1-π_2)=π_1$
∴$-0.7π_1+0.1π_2=-0.2 $ (5)
$0.4π_1+0.4π_2+0.3(1-π_1-π_2)=π_2$
∴$0.1π_1-0.9π_2=-0.3(6)$
Multiply 9 with equation (5) and adding equation (5) & (6) we get,
$-6.2π_1=-2.1$
**∴$π_1$=0.3333
∴$π_2$=0.3703**
∴$π_3=1-π_1-π_2$
$π_3$=1-0.3333-0.3703
$π_3$=0.2964 ∴ $ π_1$=0.3333 $π_2$=0.3703 $ π_3$=0.2964