Isentropic Efficiency = 88%, Inlet air temperature = $20^0C$, Max Temperature = $750^0C$, Pressure ratio = 4, Gama = 1.4 ,
To Find: Specific output ,& overall efficiency.
T1 = 293 K ,& T3 = 1023 K
$\frac{T_2}{T_1} = \frac{P_2}{P_1 }^\frac{γ-1}{γ} = (4)^\frac{1.4-1}{1.4}$ = 1.4859 x 293 K
T’2 = 435.3667 K
$\frac{T_4}{T_3} = \frac{P_4}{P_3 }^\frac{γ-1}{γ} = (4)^\frac{1.4-1}{1.4}$ = 1.4859 x 1023
T’4 = 688.471 K
Isentropic Efficiency for process 1-2 n_isen= $\frac{T'_2-T_1}{T_2-T_1}$
0.88 =$\frac{435.36-293}{T_2-293}$
T2 = 454.77 K
Isentropic Efficiency for process 3-4 n_isen= $\frac{T_3-T_4}{T_3-T'_4}$
0.88 = $\frac{1023-T_4}{1023-688.47}$
T4 = 728.61 K
Work done net = $(m_(g ) ) ̇C_pg (T_3-T_4 )- (m_a ) ̇C_pa (T_2-T_1 )$
= 1 x 1.11 (1023 – 728.61 ) – 1 x 1.005 ( 454.77– 293)
$W_net$ = 164.194 kJ/ kg of air
Over all thermal efficiency n_thermal= $(T_3-T_4) - \frac{T_2-T_1}{T_3-T_2}$
= $((1023-728.61)-\frac{454.77-293}{1023-454.77}$
nthermal= 23.33 %