0
2.3kviews
The dimensions of carburetor are as follows.

Venturi throat diameter is 20 mm with coefficient if discharge of 0.85, Fuel orifice diameter is 1.25 mm with coefficient of fuel flow of 0.66; the fuel surface is 5 mm below the throat. Compute:

1) Air fuel ratio for depression of 0.07 bar when nozzle lip is neglected

2) Air fuel ratio when nozzle lip is considered.

1 Answer
1
55views

Given data: ${d_v} = 0.022m$, $Av = \pi \times 0.0222/4 = 3.80 \times 10 - 04$, ${C_{dv}} = 0.85$, ${d_n} = 0.0125m$, ${A_n} = \pi \times 0.001252/4 = 1.2272 \times 10 - 06$, ${C_{dn}} = 0.66$, $X = 0.005mm$,

Assuming ${\rho _a} = 1.2\frac{{kg}}{{{m^3}}}$ ,${\rho _f} = 750\frac{{kg}}{{{m^3}}}$ ,${P_1} - {P_2} = 0.07 \times {10^5}Pa$

1) Calculation of A/F if nozzle lip is neglected:

using

$$\frac{A}{F} = \frac{{{C_{dv}}{A_v}}}{{{C_{dn}}{A_n}}}\sqrt {\frac{{{\rho _a}}}{{{\rho _f}}}} = \frac{{0.85 \times 3.8 \times {{10}^{ - 04}}}}{{0.66 \times 1.2272 \times {{10}^{ - 6}}}}\sqrt {\frac{{1.2}}{{750}}} = 15.95:1$$ Substituting the valves we get,A/F=15.95:1

$$\frac{A}{F} = 15.95:1$$

2) Calculation of A/F if nozzle lip is considered:

Using

$$\frac{A}{F} = \frac{{{C_{dv}}{A_v}}}{{{C_{dn}}{A_n}}}\sqrt {\frac{{{\rho _a}({P_1} - {P_2})}}{{{\rho _f}({P_1} - {P_2} - {\rho _f}.g.x)}}} $$

$$ = \frac{{0.85 \times 3.8 \times {{10}^{ - 04}}}}{{0.66 \times 1.2272 \times {{10}^{ - 6}}}}\sqrt {\frac{{1.2 \times 0.7 \times {{10}^5}}}{{750(0.7 \times {{10}^5} - 750 \times 9.81 \times 0.005)}}} $$ $$\frac{A}{F} = 15.95:1$$

Please log in to add an answer.