written 3.1 years ago by | • modified 3.1 years ago |
OTTO CYCLE PROCESSES
1-2 Isentropic Compression
2-3 Constant Volume Heating
3-4 Isentropic Expansion
4-1 Constant Volume Heating
OTTO CYCLE EFFICIENCY ($η_.otto$)
$$η_.otto ={\frac{Heat supplied-Heat rejected}{Heat supplied}} \\$$ $$ = \cfrac {m Cv (T3-T2) - m Cv (T4-T1)} {m Cv (T3-T2)}$$ $$=\cfrac{T3-T2-(T4-T1)}{T3-T2} \$$
$$=1-\frac{(T4-T1)}{T3-T2}\rightarrow \require{enclose} {\enclose{circle}{1}}\\ $$
Now,we have, Compression ratio, $$ r =\cfrac{V1}{V2}$$
Expansion ratio, $$ r1 =\cfrac{V4}{V3}$$
∴ V1=V4 and V2=V3
Compression ratio=Expansion ratio
For adiabatic compression process ,1-2 $$ \cfrac{T2}{T1}=\cfrac{V1}{V2}^{\gamma -1}$$ $$= r^{\gamma -1}$$
For adiabatic expansion process ,3-4 $$ \cfrac{T4}{T3}=\cfrac{V3}{V4}^{\gamma -1}$$ $$= \cfrac{V2}{V1}^{\gamma -1}$$ $$=\cfrac{1}{r}^{\gamma -1}$$
Substitute the above values in $ \require{enclose} {\enclose{circle}{1}}\\ $ $$η_.otto ={\frac{1-T3.\cfrac{1}{r}^{\gamma -1}-T2.\cfrac{1}{r}^{\gamma -1}}{T3-T2}}\\ $$ $$ ={\frac{1-\cfrac{1}{r}^{\gamma -1}{(T3-T2)}}{T3-T2}}=1-\cfrac{1}{r}^{\gamma -1}\\ $$