0
1.7kviews
Random Signal Analysis

The joint probability density function of two random variables is given by

fxy (X,Y)= 15e3x5y x≥0,y≥0

  • Find the probability that x<2 and Y>0.2.
  • Find the marginal densities of X and Y
  • Are X and Y Independent?
  • Find E(X/Y) and E(Y/X).

**Mumbai University > Electronics and Telecommunication Engineering > Sem 5 > Random Signal Analysis

Marks: 10M

Year: Dec 2015

1 Answer
1
7views

P(X<2,Y>0.2)=1520e3xdx. 0.2e5ydy

=15(e3x/(3))20.e5y/(5))0.2 = 15 1e6)e1/15 =0.367

fX (x)=015e3x3ydy

=15 e3x(e5y/(5))0 = 3e3x x>0

fX (x) = 3e3x x>0

=0 otherwise

fY (y)=015e3x3ydx

=15e5y(e3x/(3))0= 5e5y y>0

fY (y) = 5$e^{-5y} y\gt0 =0 otherwise Now X, Y are …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.