X and Y are discrete RVs
To find c:
We can tabulate the probabilities as follows:
f(x,y)= c(2x+y) ........ 0≤x≤2,0≤y≤3
=0

Since ∑pi=1
∴42c=1
∴c=1/42
With this value the probability distribution is

∴The marginal probability distributions of X & Y are:
X |
P(X) |
0 |
6/42 |
1 |
14/42 |
2 |
22/42 |
Y |
P(Y) |
0 |
6/42 |
1 |
9/42 |
2 |
12/42 |
3 |
15/42 |
E(X)= ∑pixi
=0+1×14/42+2×22/42
E(X)=58/42=1.381
E(Y)=∑piyi
=0+1×9/42+2×12/42+3×15/42
E(Y)=78/42=1.857
E(XY)=∑2i=0 ∑3j=0xiyj.p(x=i,y=j)
=0*0+1. ∑3j=0yjp(x=1,y=j)+2.∑3j=0yjp(x=2,y=j)
=0+1(0×2/42+1×3/42+2×4/42+3×5/42)+2(0×4/42+1×5/42+2×6/42+3×7/42)
=26/42+76/42
E(XY)=102/42=2.429
E(X2 )=∑pix2i
=0+1×14/42+2^2×22/42
E(X2 )=102/42=2.429
E(Y2 )=∑piy2i
=0+1×9/42+22×12/42+32×15/42
E(Y2 )=192/42=4.571
Var(X)=E(X2 )-E(X)2
=2.429-1.3812
=2.429-1.9072
Var(X)=0.5218
Var(Y)=E(Y2 )-E(Y)2
=4.571-1.8572
=4.571-3.4484
Var(Y)=1.1226
cov(X,Y)=E(XY)-E(X)E(Y)
=2.429-1.381*1.857=2.429-2.565=-0.1355
Cov(XY)= -0.1355
σx=√(Var(X) )=√0.5218=0.7224
σy=√(Var(Y) )=√1.1226=1.06
ρxy=Cov(X,Y)/(σxσy )=-0.1355/(0.7224*1.06)=0.177
ρxy=0.177