written 7.8 years ago by | • modified 7.8 years ago |
**Mumbai University > Electronics and Telecommunication Engineering > Sem 5 > Random Signal Analysis
Marks: 10M
Year: May 2016
written 7.8 years ago by | • modified 7.8 years ago |
**Mumbai University > Electronics and Telecommunication Engineering > Sem 5 > Random Signal Analysis
Marks: 10M
Year: May 2016
written 7.8 years ago by |
We introduce auxillary random variable W=Y
Now we have Z=X/Y and W=Y i.e. z=x/y and w=y
∴x=zy=zw and y=w ∴J=
∴J==y We know the joint probability density function $f_{ZW}$ (z,w)=|J| $f_{XY}$ (x,y)=|y|$f_{XY}$ (x,y)
Since X and Y are independent random variables
$f_{XY}$ (x,y)=$f_X$ (x).$f_Y$ (y)
Since X and Y are independent random variables
$f_{XY}$ (x,y)=$f_X$ (x).$f_Y$ (y)
$f_{ZY}$ (z,w)=|y|$f_{XY}$ (x,y)=|y|$f_X$ (x).$f_Y$ (y)
∴$f_{ZW}$ (z,w)=|y|$f_X$ (yz).$f_Y$ (y)
The marginal probability density function of Z is obtained by integrating $f_{ZW}$ (z,w) w.r.t to w i.e. y
∴$f_Z$ (z)=$∫_{-∞}^∞ |y|f{_X} (yz).{f_Y} (y)dy$
Similarly ∴$f_Z$ (z)=$∫_{-∞}^∞ |x|{f_Y} (xz).{f_X} (x)dx$ , if W=X