written 7.9 years ago by | • modified 3.1 years ago |
the cycle efficiency and mean effective pressure.
written 7.9 years ago by | • modified 3.1 years ago |
the cycle efficiency and mean effective pressure.
written 7.9 years ago by | • modified 7.9 years ago |
$p_1=0.1 MPa,T_1=35+273=308K,r=\frac{v_1}{v_2} =8:1,\text{heat supplied}=2100KJ/Kg$
Adiabatic compression process 1-2:
$\frac{T_2}{T_1} =\frac{v_1}{v_2}^(γ-1)=r^(γ-1)=8^(1.4-1)$
$T_2$=2.297×308=707.476K
$p_1 v_1^γ=p_2 v_2^γ$
$\frac{p_2}{p_1} =\frac{v_1}{v_2}^γ=8^1.4=18.379$
$p_2$=18.379×1=18.379 bar
Constant volume process 2-3:
Heat added during the process,
$c_v (T_3-T_2 )=2100$
$0.72(T_3-707.476)=2100 $
$T_3=3624.143K$
Also,
$\frac{p_2}{T_2} =\frac{p_3}{T_3}$
$p_3=\frac{p_2 T_3}{T_2}$
=$\frac{18.379×3624.143}{707.476}$
$p_3$=94.14 bar
Thermal efficiency,
$η_th=1-\frac{1}{r^(γ-1)}$
=$1-\frac{1}{8^(1.4-1)}$
$η_th$=.5674=56.74%
∴pressure ratio,$r_p$=$\frac{p_3}{p_2}$ =$\frac{94.14}{18.379}$=5.122
The mean effective pressure is given by,
$p_m=\frac{p_1 r[(r^(γ-1)-1)(r_p-1) ]}{(γ-1)(r-1)}$
=$\frac{(1×8[{8^(1.4-1)-1}{5.122-1} ]}{(1.4-1)(8-1)}$
$p_m$=15.28bar
written 3.1 years ago by | • modified 3.1 years ago |
1.243457723×10^-3 this is my answer