written 7.8 years ago by |
Diesel cycle comprises of the following operations:
(i) 1-2......Adiabatic compression.
(ii) 2-3......Addition of heat at constant pressure.
(iii) 3-4......Adiabatic expansion.
(iv) 4-1......Rejection of heat at constant volume.
Consider 1 kg of air.
Heat supplied at constant pressure =$C_p (T_3-T_2 )$
Heat rejected at constant volume =$C_v (T_4-T_1 )$
Work done = Heat supplied – Heat rejected
=$C_p (T_3-T_2 )-C_v (T_4-T_1 )$
$η_diesel=\frac{work done}{heat supplied}$
=$\frac{C_p (T_3-T_2 )-C_v (T_4-T_1 )}{C_p (T_3-T_2 )}$
=$\frac{1-(C_v (T_4-T_1 )}{C_p (T_3-T_2 )}$
=$\frac{1-(T_4-T_1 )}{γ(T_3-T_2 )}$ ………(i)[$\frac{C_p}{C_v}$ =γ]
Let compression ratio,r=$\frac{v_1}{v_2}$ , and cut-off ratio,ρ=$\frac{v_3}{v_2}$ i.e.$\frac{Volume at cut-off}{clearance volume}$
Now, during adiabatic compression 1-2,
$\frac{T_2}{T_1}$ =$\frac{v_1}{v_2}^(γ-1)$=$r^(γ-1)$ or $T_2=T_1 r^(γ-1)$
During constant pressure process 2-3,
$\frac{T_3}{T_2}$ =$\frac{v_3}{v_2}$ =ρ or $T_3=ρT_2=ρT_1 r^(γ-1)$
During adiabatic expansion 3-4
$\frac{T_3}{T_4}$ =$\frac{v_4}{v_3}^(γ-1)$=$\frac{r}{ρ}^(γ-1)$ (since $\frac{v_4}{v_3} =\frac{v_1}{v_3} =\frac{v_1}{v_2} ×\frac{v_2}{v_3} =\frac{r}{ρ}$)
$T_4=\frac{T_3}{\frac{r}{ρ}}^(γ-1)$ =$\frac{ρ∙T_1 r^(γ-1)}{\frac{r}{ρ}^(γ-1)}$ =$T_1 ρ^γ$
By inserting values of $T_2,T_3$ and $T_4$ in eqn. i, we get
$η_diesel=\frac{1-(T_1 ρ^γ-T_1 )}{γ(ρ.T_1.r^(γ-1)-T_1∙r^(γ-1))} =\frac{1-(ρ^γ-1)}{γ∙r^(γ-1) (ρ-1)}$
$η_diesel=1-\frac{1}{(γ.r^(γ-1)} [\frac{(ρ^γ-1)}{(ρ-1)}]$