0
1.3kviews
Find out the divergence and curl of the following function:

Find out the divergence and curl of the following function:

$ \\ \overline{A} =(2 \times y) \overline{a_x}+(x^2 z) \overline{a_z} +(z^3 ) \overline{a_z}$

1 Answer
0
5views

Divergence:

$∇. \overline{A}=\dfrac{d}{dx} A_x+ \dfrac{d}{dy} A_y+ \dfrac{d}{dz} A_z \\ ∇. \overline{A}=\dfrac{d}{dx} (2 ×y)+ \dfrac{d}{dy} (x^2 z)+ \dfrac{d}{dz} (z^3 ) \\ ∇. \overline{A}=2y+0+z^2 units$

Curl:

$∇. \overline{A}=\begin{vmatrix}\overline{a_x }&\overline{a_y }&\overline{a_z } \\ \dfrac{d}{dx}&\dfrac{d}{dy}&\dfrac{d}{dz} \\ 2xy&x^2 z&z^3 \end {vmatrix} \\ ∇. \overline{A}=\overline{a_x } [0-x^2 ]+ (-\overline{a_y } )[0-0]+\overline{a_z} [2 ×z-2x] \\ ∇. \overline{A}= -x^2.\overline{a_x } +[2xz-2x] \overline{a_z } units$

Please log in to add an answer.