written 7.8 years ago by | modified 2.8 years ago by |
Mumbai University > Civil Engineering > Sem 5 > Structural Analysis – II
Marks: 8 Marks
Year: Dec 2014
written 7.8 years ago by | modified 2.8 years ago by |
Mumbai University > Civil Engineering > Sem 5 > Structural Analysis – II
Marks: 8 Marks
Year: Dec 2014
written 7.8 years ago by |
Θ = tan -1 [ 5/3 ] = 59°
DC inclined distance = sq.rt 5^2 + 3^2 = 5.83 m
Dsi = r – 3 = 5 – 3 = 2
Select support D as redundant. No moment at D bcoz hinge at D.
Remove all actual loads & apply unit load at D,
Members | Origin | Length | M | M1 | M2 |
---|---|---|---|---|---|
DC | D | 5.83 | 0 | 1xsin 59° | 1*cos 59° |
CB | C | 4 | -30*x^2 / 2 | 1*5 | 1*x + 3 |
BA | B | 5 | -24x – 3042 | -1*x + 4 | 1*7 |
δ11 $= ∫ M1*M1 /EI dx = ∫0-5.83 ( x sin 59 )^2 + ∫0-4 (25 ) + ∫0-5 (4 - x)^2 \\ = 134.15$
δ12 $= ∫ M1*M2 / EI dx = ∫0-5.83 (x sin 59° cos 59° ) + ∫0-4 (5x + 15 ) + ∫0-5 ( 28 – 7x ) \\ = 1169.16$
δ22 $= ∫ M2*M2 / EI dx = ∫0-5.83 ( cos 59° )^2 + ∫0-4 ( x+3 )^2 + ∫0-5 ( 49) \\ = 351.88$
Δ1L $= ∫ M*M1 / EI dx = 0 + ∫0-4 (5* 30x^2 / 2 ) + ∫0-5 ( -24x - 30*4*2 )* (4-x) \\ = -400$
Δ2L $= ∫ M*M2 /EI dx = 0 + ∫0-4 ( 30x^2 / 2 ) * (x+3) + ∫0-5 ( - 168x – 1680 ) \\ = -8580$
Forces P1 & P2 , are calculated as follows ,
[ 400 ] = [ P1 ] [134.15 1169.16]
[ 8580 ] [ P2 ] [1169.16 351.88]
Forces : $P1 = 7.5 KN \\ P2 = -0.52 KN$