0
2.7kviews
Analyse the frame and draw BMD by using Flexibility Method

enter image description here

Mumbai University > Civil Engineering > Sem 5 > Structural Analysis – II

Marks: 8 Marks

Year: Dec 2014

1 Answer
0
54views

Θ = tan -1 [ 5/3 ] = 59°

DC inclined distance = sq.rt 5^2 + 3^2 = 5.83 m

Dsi = r – 3 = 5 – 3 = 2

Select support D as redundant. No moment at D bcoz hinge at D.

Remove all actual loads & apply unit load at D,

Members Origin Length M M1 M2
DC D 5.83 0 1xsin 59° 1*cos 59°
CB C 4 -30*x^2 / 2 1*5 1*x + 3
BA B 5 -24x – 3042 -1*x + 4 1*7

δ11 $= ∫ M1*M1 /EI dx = ∫0-5.83 ( x sin 59 )^2 + ∫0-4 (25 ) + ∫0-5 (4 - x)^2 \\ = 134.15$

δ12 $= ∫ M1*M2 / EI dx = ∫0-5.83 (x sin 59° cos 59° ) + ∫0-4 (5x + 15 ) + ∫0-5 ( 28 – 7x ) \\ = 1169.16$

δ22 $= ∫ M2*M2 / EI dx = ∫0-5.83 ( cos 59° )^2 + ∫0-4 ( x+3 )^2 + ∫0-5 ( 49) \\ = 351.88$

Δ1L $= ∫ M*M1 / EI dx = 0 + ∫0-4 (5* 30x^2 / 2 ) + ∫0-5 ( -24x - 30*4*2 )* (4-x) \\ = -400$

Δ2L $= ∫ M*M2 /EI dx = 0 + ∫0-4 ( 30x^2 / 2 ) * (x+3) + ∫0-5 ( - 168x – 1680 ) \\ = -8580$

Forces P1 & P2 , are calculated as follows ,

[ 400 ] = [ P1 ] [134.15 1169.16]

[ 8580 ] [ P2 ] [1169.16 351.88]

Forces : $P1 = 7.5 KN \\ P2 = -0.52 KN$

enter image description here

Please log in to add an answer.