written 7.8 years ago by | modified 2.8 years ago by |
Mumbai University > Civil Engineering > Sem 5 > Structural Analysis – II
Marks: 10 Marks
Year: May 2015
written 7.8 years ago by | modified 2.8 years ago by |
Mumbai University > Civil Engineering > Sem 5 > Structural Analysis – II
Marks: 10 Marks
Year: May 2015
written 7.8 years ago by |
Degree of Static Indeterminancy
( Dsi ) e = R-E = 3-3 = 0
( Dsi ) i = m ( 2j – 3 ) = 8 – ( 2*5 – 3 ) = 1
AC considered as a Redundant.
P analysis :
Apply condition of equilibrium
ΣMA = 0
= 20 * 3 + 20*3 – RE * 6 = 0
RE = 20 KN
Σ FX = 0
HA + 20 = 0
HA = -20 KN
ΣFY = 0
VA – 20 -20 + 20 = 0
VA = 20 KN
Θ = tan -1 ( 3/3 ) = 45°
Consider joint A ,
From fig ,
P AB = 20 KN
P AD = 20 KN
Consider joint B ,
Apply condition of equilibrium
ΣFY = 0
-20 +20 + P BD sin 45 = 0
P BD = 0
P BC = 20 KN
Consider joint C ,
Σ FX = 0
-20 – P CE cos 45 = 0
P CE = 28.28 KN
ΣFY = 0
-20 + P CD + 28.28 cos 45 = 0
P CD = 0
Consider joint E ,
Σ FX = 0
-P DE + 28.28 cos 45 = 0
P DE = 20 KN
K – analysis
Σ MA = 0
cos 45 * 3 - sin 45 * 3 – VE *6 = 0
VE = 0
Σ FY = 0
VA + cos 45 – cos 45 + 0 = 0
VA = 0
Σ FX = 0 , HA = 0
Consider joint A ,
K AB = K AD = cos 45 = 0.707 KN
Consider joint E ,
K DE = K CE = 0
KCD = K CB = 0.707 KN
Forces :
Compression – ve
Tension +ve
Correction factor
X = - { [ Σ ( PKL / AE) ] / [ Σ ( K²L / AE ) ] } = -( 4.242 / 10.42 )
X = - 0.414 KN