Data:- bf = 1250mm
bw = 300mm
Ast = $\frac{8Xπ}{4X202}$
=2513.27 $mm^2$
Df = 100mm
Fck = $20N/mm^2$
Fy = $415 N/mm^2$
To find :- Mv
Solution:-
1) Depth of NA
Assume the depth of NA lies within the flange
Xu = 0.87fyAst/0.36Xfckbf
= 0.87X415X2513.27/0.36X20X1250
= 100.82 > 100mm
Xu > Df
.•. Assumption is wrong.
2) NA lies in web.
3) depth of NA xu lies below flange and assume or Df/d <=0.2
.•. 100/550 = 0.18 > 0.2
Yf = 0.15xu + 0.65Df
= 0,15(xud) + 0.65 Df
= 0.15Xx + 0.65X100
= 0.15xu + 65 < Df
.•. OK
Cu1 + Cu2 = Tu
0.36fck.bwxu + 0.45fckYf(bf - bw) = 0.87fy.Ast
0.36X20X300.xu + 0.45X20(0.15xu + 65) X (1250 - 300)
= 0.87 X 415 X 2153.27
Xu = 64.39mm
3/7xu = 27.60mm
.•. safe.
Assumption are correct.
Xu1 max = 0.48d = 264mm
Xu max > xu
Yf = 0.15(64.39) + 65 = 74.65mm
Moment of resistance.
Mu = 0.36xu / d(1 - 0.042xu/d) fckbwd2 + 0.45fck(bf - bw)Yf(d - Yf/2)
= 0.36 X 64.39/550(1 - 0.042.64.39/550) X 20 X 300 X 550 + 0.45 X 20(1250 - 300)74.65(550 - 74.65/2)
= 400KNm