Given: $P_1$=7 bar,$T_1$=206℃,$V_1$=0.03$m^3$,$V_2$=0.09$m^3$,n=1.5
To find mass of the air we will use the relation,
$P_1 V_1=mRT_1$ m=$\frac{(P_1 V_1)}{(RT_1 )}$=$\frac{(7×10^5×0.03)}{(287×479)}$=0.1527Kg
From
$P_2 V_2=mRT_2 T_2$=$\frac{(P_2 V_2)}{mR}$=$\frac{(7×10^5×0.09)}{(0.1527×287)}$=1437.53K
Also
$P_2 V_2^1.4=P_3 V_3^1.4$
And
$\frac{T_2}{T_3}$ =$\frac{p_2}{p_3 }^\frac{1.4-1}{1.4}$
But $T_3$=$T_1$ as 1 and 3 are on an isothermal line.
$\frac{1437.53}{479}$=$\frac{7}{p_3}^\frac{0.4}{1.4}$
$p_3$=0.581 bar
Now,
$p_3 V_3$=$mRT_3$
$0.581×10^5×V_3$=0.1527×287×479
$V_3=0.3613 m^3$
i) The heat received in the cycle:
Applying firs law to the constant pressure process 1-2,
Q=∆U+W
W=$∫_1^2pdV$
=p($V_2-V_1 $)
=7×10^5 (0.09-0.03)
=42000J or 42 KJ
Q=$mC_v$ ($T_2-T_1 $)+42
=0.1527×0.713(1437.53-479)+42
=146.36KJ
i.e., Heat received= 146.36kJ
Applying first law to reversible polytropic process 2-3
Q=∆U+W
But W=$\frac{p_2 V_2-p_1 V_1}{(n-1)}$
=mR$\frac{(T_2-T_3 )}{(n-1)}$
=$\frac{(0.1527×287×(1437.53-479))}{(1.4-1)}$
=105.01KJ
$Q=mC_v (T_3-T_2 )$
=0.1527×0.713×(479-1437.53)+105.01
=0.6499KJ
Therefore total heat received in the cycle=146.36+0.6499=147KJ
ii) The heat rejected in the cycle:
applying first law to reversible isothermal process 3-1
Q=∆U+W
W=$p_3 V_3$ log_e $\frac{V_1}{V_3}$
=0.581×0.3613 log_e $\frac{0.03}{0.3613}$
=-0.52 KJ
Q=$mC_v (T_1-T_3 )+W$
=0-0.52
=-0.52KJ
Hence heat rejected in the cycle = 0.52KJ