written 7.9 years ago by
teamques10
★ 69k
|
•
modified 7.9 years ago
|
Given:
$m_h$=0.55Kg⁄s,$C_p$=2.45KJ⁄KgC,$T_(h,1)$=115℃,$T_(h,2)$=40℃,$T_c1$=15℃,$T_(c,2)$=75℃,
U=1450$\frac{W}{(m^2 C)}$
The mass flow rate of water:
Q=$ϵC_min T_(h.1)-T_(c,1)$
To find $m_c$,use energy balance equation
0.55× 2450 (115 - 40)= $m_c$× 4186 (75 - 15)
mc = 0.40kg/s
Effectiveness of heatexchanger
Heat capacity rate of hot fluid: $C_h$=$m_h$ $C_ph$=0.55×2.45=1.35KW⁄K
Heat capacity rate of cold fluid:$C_c=m_c C_pc$=0.40×4.186=1.67KW/K
$C_h \lt C_c$
$C_h$= $C_min$
ϵ=$\frac{(m_h C_ph (T_(h,in)-T_(h,out) ))}{(C_min (T_(h,in)-T_(c,in) ) )}$=$\frac{(115-40)}{(115-15)}$=0.75
∈=75%
Q=0.75×1350×(115-15)
Q=101.250W
Area Of heat exchanger
Q=$UA∆T_lm$
$∆T_lm$=$\frac{(∆T_1-∆T_2)}{(ln((∆T_1)/(∆T_2 )) )}$
=$\frac{((115-75)-(40-15))}{ln((115-75)/(40-15))}$
=31.9℃
A=$\frac{101.25}{(31.9×1450)}$
A=$2.19m^2$