An egg as sphere
D=4cm=0.04m
$T_i$=20℃ $t_1$=4 min=240 s
$T_i$=5℃ ,k=10w/mk,h=100w/($m^2$ k),C=2000j/kgk,ρ=1200Kg/$m^3$
The temperature distribution, using lumped system analysis
$\frac{(T-T_∞)}{(T_i-T_∞ )}=exp\frac{-ht}{ρlc}$
Where l= characteristic length which is$\frac{D}{6}$for sphere.
Temperature of consumers taste
$\frac{(T-100)}{(20-100)}=exp\frac{(-100×240×6)}{(1200×0.04×2000)}$
T=0.223(-80)+100=82.15℃
When egg is taken out from refrigerator at
$T_i$=5℃ and T=82.15℃
$\frac{(82.15-100)}{(5-100)}=exp\frac{-(100×t×6)}{(1200×0.04×2000)}$
t=267.5sec=4.45mins