written 7.9 years ago by |
Consider a volume element of a fin at location x having a length dx, C/S area Ac and a perimeter P as shown in fig under steady state condition,
Energy equation for above fig can be written as
$\begin{pmatrix}rate of heat\\ conduction into\\ the element at x\\\end{pmatrix}$=$\begin{pmatrix}rate of heat\\ conduction from the\\ element at x+dx\\\end{pmatrix}$+$\begin{pmatrix}rate of heat\\ convection from\\ the element\\\end{pmatrix}$
Fig 2.1: Volume element of a fin at location x having a length of dx.
$Q_x$=$Q_(x+dx)$+$Q_conv$
$\frac{Q_(x+dx)-Q_x}{dx+hp(t-t_a )}$=0………(i) as $Q_conv$=$h(pdx)(t-t_a)$
$\frac{dQ_x}{dx+hP(t-t_a )}$=0
$Q_cond$=$-kA_c$ $\frac{dt}{dx}$………(ii)
Substituting the value of $Q_c$ond from the above equation in eq (i), we get the differential equation governing heat transfer in fins:
$\frac{d}{dx}$ ($kA_c$ $\frac{dt}{dx}$)-hP($t-t_a $)=0………(iii)
$\frac{d^2 t}{dx^2 }$-$\frac{hP}{kA_c }(t-t_a )$=0
$\frac{d^2 t}{dx^2}$-$m^2 θ$=0………(iv)
Where m=$\sqrt{\frac{hP}{A_c k}}$……….(v)
θ=$t-t_a$
Solving equation (iv) we will get the solution as follows
θ=$C_1 e^mx$+$C_2 e^(-mx)$………(vi)
To solve above equation we will apply boundary condition. boundary conditions are heat dissipation from a fin losing heat at the tip.
Fig2.1: fin of finite length losing heat at the tip
Please note $T_L$=t, $T_∞=t_a$
Boundary condition can be obtained by energy balance at fin tip.
$-kA_c\frac{dt}{dx}_(x=L)$=$hA_s (t-t_a )$
$-k\frac{dθ}{dx}_(x=L)=hθ_(x=L)$ ………(vii)
Substituting above equation in (vi) we get,
-$km[-C_1 e^(-mL)+C_2 e^mL ]$=$h[C_1 e^(-mL)+C_2 e^mL ]$
Rearranging as,
$C_1 e^(-mL)-C_2 e^mL=\frac{h}{mk} [C_1 e^(-mL)+C_2 e^mL ]$
Solving above
$θ_0 e^(-mL)-C_2 e^(-mL)-C_2 e^mL=h/mk [θ_0 e^(-mL)-C_2 e^(-mL)+C_2 e^mL ]$ as$ θ_0=C_1+C_2 $ from eq (vi)
Solving above we will get,
$C_2=(θ_0 \frac{e^(-mL)-\frac{h}{mk} e^(-mL)}{e^mL+e^(-mL)+\frac{h}{mk} [e^mL-e^(-mL)}$
Similarly, we get
$C_1=θ_0 \frac{e^mL+\frac{h}{mk} e^mL }{e^mL+e^(-mL)+\frac{h}{mk} [e^mL-e^(-mL)]}$
Substituting $C_1$ and $C_2$ in equation (vi) we get,
$\frac{θ(x)}{θ_0}$ =$\frac{(e^m(L-x)+\frac{h}{mk} e^m(L-x)+e^(-m(L-x))-\frac{h}{mk} e^-m(L-x))}{(e^mL+e^(-mL)+\frac{h}{mk} [e^mL-e^(-mL) ] )}$
It may be rearranged and expressed in terms of hyperbolic functions as
$\frac{θ(x)}{θ_0}$ =$\frac{t(x)-t_a)}{(t-t_a )}$=$\frac{(cosh{m(L-x)}+(\frac{h}{mk})sinh{m(L-x)})}{(cosh(mL)+(\frac{h}{mk})sinh(mL))}$
The total heat transfer from fin
$Q_0=Q_fin$=$-kA_c (\frac{dθ}{dx})_(x=0)$=
$\sqrt{(hPkA_c )}(t-t_a)\frac{(sinh(mL)+\frac{h}{mk} cosh(mL))}{(cos(mL)+\frac{h}{mk} sinh(mL))}$