written 8.2 years ago by |
G(S)H(S)=K(S+4)(S+5)(S+3)(S+1)
Here, no. of poles P=2
No. of zeros Z=2
No. of branches ending at ∞,
N=P-Z=2-2
=0
Angle of Asymptoe
Θ=(2q+1)180(P−Z), q=0, 1,…….,(P-Z-1)
As P-Z=0, Angle of asymptote is not applicable
Centroid -> NA
The characteristic equaton is,
1+G(S)H(S)=0
1+k(S2+9S+20)(S2+4S+3)=0
k(S2+9S+20)(S2+4S+3)=-1
k=−(S2+4S+3)(S2+9S+20)
dkds=0
-(S2+4S+3)(2S+9)−(S2+9S+20)(2S+4)(S2+9S+20)2]=0
(S2+4S+3)(2S+9)−(S2+9S+20)(2S+4)=0
2S3+8S2+6S+9S2+36S+27−(2S3+4S2+18S2+36S+40S+80)=0
(17S2−22S2)+42S−76S+27−80=0
−5S2−34S−53=0
5S2+34S+53=0
S=−3±√(342−4xSx53)(2xS)
S=-4.79, -2.241
As both the values of ‘S’ lies on root locus. Both are valid break away points.
Point of intersection with imaginary axis,
S2 (1+k) (20k+3)
S1 (4+9k) 0
S0 (20k+3) 0
(1+k) ≥ 0 k_max=-1
(4+9k) ≥ 0 k_max=(-4)/9
(20k+3) ≥ 0 k_max=(-3)/20
There is no point of intersection with imaginary axis.