0
4.5kviews
Draw the root locus of the control system whose open loop transfer function is given by G(S)H(S)=K(S+4)(S+5)(S+3)(S+1)
1 Answer
0
147views

G(S)H(S)=K(S+4)(S+5)(S+3)(S+1)

Here, no. of poles P=2

No. of zeros Z=2

No. of branches ending at ∞,

N=P-Z=2-2

=0

Angle of Asymptoe

Θ=(2q+1)180(PZ), q=0, 1,…….,(P-Z-1)

As P-Z=0, Angle of asymptote is not applicable

Centroid -> NA

The characteristic equaton is,

1+G(S)H(S)=0

1+k(S2+9S+20)(S2+4S+3)=0

k(S2+9S+20)(S2+4S+3)=-1

k=(S2+4S+3)(S2+9S+20)

dkds=0

-(S2+4S+3)(2S+9)(S2+9S+20)(2S+4)(S2+9S+20)2]=0

(S2+4S+3)(2S+9)(S2+9S+20)(2S+4)=0

2S3+8S2+6S+9S2+36S+27(2S3+4S2+18S2+36S+40S+80)=0

(17S222S2)+42S76S+2780=0

5S234S53=0

5S2+34S+53=0

S=3±(3424xSx53)(2xS)

S=-4.79, -2.241

As both the values of ‘S’ lies on root locus. Both are valid break away points.

Point of intersection with imaginary axis,

S2 (1+k) (20k+3)

S1 (4+9k) 0

S0 (20k+3) 0

(1+k) ≥ 0 k_max=-1

(4+9k) ≥ 0 k_max=(-4)/9

(20k+3) ≥ 0 k_max=(-3)/20

There is no point of intersection with imaginary axis.

enter image description here

Please log in to add an answer.