0
3.0kviews
Draw the root locus of the control system whose open loop transfer function is given by G(S)H(S)=$\frac{k}{(S^2 (S+1))}$
1 Answer
written 8.0 years ago by |
G(S)H(S)=$\frac{k}{(S^2 (S+1)}$
No. of poles P=3 S=0, S=0, S=-1
No. of zeros Z=0
No. of branches ending at ∞
N=P-Z
=3-0
=3
Angle of asympoles will be,
Θ=$\frac{(2q+1)180}{(P-Z)}$, q=0, 1, 2
θ_1 =$\frac{(2 x 0 +1)180)}{3}$=180/3=60
θ_2 =$\frac{(2 x 1 +1)180)}{3}$=180
θ_3 =$\frac{(2 x 2 +1)180)}{3}$=900/3=300
Centroid
σ=$\frac{(Ʃ real part of poles-Ʃ real part of zeros)}{(P-Z)}$
=$\frac{(-1+0+0)-0)}{3}$
Σ=-0.33
No intersection with imaginary axis