0
3.0kviews
Draw the root locus of the control system whose open loop transfer function is given by G(S)H(S)=$\frac{k}{(S^2 (S+1))}$
1 Answer
0
102views

G(S)H(S)=$\frac{k}{(S^2 (S+1)}$

No. of poles P=3 S=0, S=0, S=-1

No. of zeros Z=0

No. of branches ending at ∞

N=P-Z

=3-0

=3

Angle of asympoles will be,

Θ=$\frac{(2q+1)180}{(P-Z)}$, q=0, 1, 2

θ_1 =$\frac{(2 x 0 +1)180)}{3}$=180/3=60

θ_2 =$\frac{(2 x 1 +1)180)}{3}$=180

θ_3 =$\frac{(2 x 2 +1)180)}{3}$=900/3=300

Centroid

σ=$\frac{(Ʃ real part of poles-Ʃ real part of zeros)}{(P-Z)}$

=$\frac{(-1+0+0)-0)}{3}$

Σ=-0.33

No intersection with imaginary axis

enter image description here

Please log in to add an answer.