Comparing the given equation with standard equation, we get
A=$\begin{bmatrix}
0& 1& 0& \\
0& 0& 1& \\
-1& -3& -2& \\
\end{bmatrix}$
B=$\begin{bmatrix}0\\ 0\\ 1\\\end{bmatrix}$
C=$\begin{bmatrix} 1& 0& 0&\\\end{bmatrix}$
D=0
We know that
T.F=$\frac{(Y(S))}{(U(S))}$=C[SI-A]$^(-1)$ B+D
Now,
[SI-A] =$\begin{bmatrix}
S& 1& 0& \\
0& S& 0& \\
0& S& 0& \\
\end{bmatrix}$
$\begin{bmatrix}
0& 1& 0& \\
0& 0& 1& \\
-1& -3& -2& \\
\end{bmatrix}$
[SI-A]=$\begin{bmatrix}
S& -1& 0& \\
0& S& 1& \\
-1& -3& S+2& \\
\end{bmatrix}$ =P, say
Now,to find [SI-A]$^(-1)$ by adj method, we know
$P^(-1)$=$\frac{(Adj P)}{(|P|)}$
$[SI-A]^(-1) $=$\frac{1}{(S^2+2S-5)}$ $\begin{bmatrix} S-1 & 2 \\ 1 & S+3 & \\ \end{bmatrix}$
$\frac{(Y(S))}{(U(S))}$=C[SI-A]$^(-1)$ B
=[1 0] $\frac{1}{(S^2+2S-5)}\begin{bmatrix}
\ s-1 & 2 \\
\ 1 & s+3 \\
\ \end{bmatrix}
\begin{bmatrix} \ 0 \\ \ 2 \\ \end{bmatrix}$
=$\frac{\begin{bmatrix}S-1& 0&\\\end{bmatrix} \begin{bmatrix} 0 \\ 2 \\\end{bmatrix}}{(S^2+2S-5)}$
$\frac{(Y(S))}{(U(S))}$=$\frac{4}{(S^2+2S-5)}$
The cofactor matrix is,
P(1,1)=S(S+2)+3=$S^2$+2S+3
P(1,2)=1
P(1,3)=+S
P(2,1)=-S-2
P(2,2)=$S^2$+2S
P(2,3)=3S-1
P(3,1)=1
P(3,2)=-S
P(3,3)=$S^2$
Cofactors elements=$(-1)^(i+j) A_ij$
=$\begin{bmatrix}S^2+2S+3& 1& S&\\ S+2& S^2+2S& -3S+1&\\ 1&S&S^2\\\end{bmatrix}$
This is the matrix of cofactors
Adj(P)=$[Matrix of coefficient]^T$
=$\begin{bmatrix}(S^2+2S+3& S+2& 1& \\ 1& S^2+2S& S& \\ S&-3S+1& S^2&\\\end{bmatrix}$
Now
|P|=$S[S^2+2S+3]+1[-1]+0$
|P|=$S^3+2S^2+3S-1$
Substituting in equation,
$[SI-A]^(-1)$=$\frac{\begin{bmatrix}S^2+2S+3& S+2& 1& \\ 1& S^2+2S& S& \\ S &-3S+1 &S^2& \\\end{bmatrix}}{(S^3+2S^2+3S-1)}$
$[SI-A]^(-1)$=$\frac{1}{(S^3+2S^2+3S-1)}$ $\begin{bmatrix}S^2+2S+3& S+2& 1& \\ 1& S^2+2S& S& \\ S&-3S+1& S^2&\\\end{bmatrix}$
Substituting above value in the equation of transfer function,
T.F=$\frac{(Y(S))}{(U(S))}$
=[1 0 0] x $\frac{1}{(S^3+2S^2+3S-1)}$ $\begin{bmatrix}S^2+2S+3& S+2& 1& \\ 1& S^2+2S& S&\\ S&-3S+1&S^2&\\\end{bmatrix}$ $\begin{bmatrix}0 \\0 \\1 \\\end{bmatrix}$
=$\frac{1}{(S^3+2S^2+3S-1)}$ [S^2+2S+3 S+2 1] $\begin{bmatrix}0 \\0 \\1 \\\end{bmatrix}$
=$\frac{1}{(S^3+2S^2+3S-1)}$(1)
T.F=$\frac{1}{(S^3+2S^2+3S-1)}$