0
5.0kviews
a control system open loop transfer function of G(s) H(s) = K(S2(S+2)(S+3))

Find the value of “K” to limit steady state error to 10, when input to system is {1+10t+20t2}. Here ‘t’ is the time.

1 Answer
0
231views

G(S)H(S)=k(S2(S+2)(S+3)), r(t)=1+10t+20t^2

=1+10t+40t22

Input is the combination of all the three type, step of magnitude A1=1, Ramp of magnitude A2=10 and parabolic of magnitude A3=40.

Position error kp=\lim_(S\to 0)G(S)H(S)=\lim_(S\to 0)\frac{k}{(S^2 (S+2)(S+3))}=\frac{k}{0}k_p=Velocityerror,k_v=\lim_(S\to 0)$ S G(S) H(S)

=lim(S0) (S.k)(S2(S+2)(S+3))

=k0

kv=∞

Acceleration error, ka=lim(S0) S2G(S) H(S)

=lim(S0) (S2k)(S2(S+2)(S+3))

=k((2)(3))

=k6

ka=k6

ess =ess1+ess2+ess3=A1(1+kp)+A2kv +A3ka

=1(1+)+10+40k6)

=0+0+240k

Since, ess=10

10=240k

k=24010

k=24

Please log in to add an answer.