G(S)=$\frac{1}{(S^2+2S+3)}$
Position error $k_p$= $\lim_(S\to 0)$ G(S) H(S), H(S)=1
=$\lim_(S\to 0)$ $\frac{1}{(S^2+2S+3)}$ x 1
$k_p$=$\frac{1}{3}$
For unit step input, magnitude A=1
$e_ss$=$\frac{A}{(1+k_p )}$=$\frac{1}{(1+1/3)}$
$e_ss$=0.75
Comparing the given equation with second order standard equation
$\frac{(w_n^2)}{(S^2+2ξw_n S+w_n^2 )}$
$w_n^2$=3
Therefore,$w_n$=1.732
$2ξw_n$=2
Therefore, ξ=0.577 underdamped system
Θ=〖tan^(-1)$\sqrt{\frac{(1-ξ2)}{ξ}]}$
Θ=tan^(-1)$\sqrt{\frac{(1-0.577)}{0.577}}]$
=54.76
Θ=0.9557 radians
$w_d$=$w_n$ $\sqrt{(1-ξ2)}$
=1.732$\sqrt{(1-0.577)}$
=1.414 rad/sec
We know that for underdamped system, the output(response) in time domain is,
C(t)=1-e$^\frac{(-ξw_n t)}{\sqrt{(1-ξ2)sin(w_d+θ)}}$
=1-e$^\frac{(-0.999t)}{0.8167sin(1.414+0.9557)}$
C(t)=1-1.2244e$^(-0.999t) sin(1.414+0.9557)$
Ramp input, magnitude$ A_2$
$k_v$ =$\lim_(S\to 0)$ S G(S) H(S)
=$\lim_(S\to 0)$ $\frac{S}{(S^2+2S+3)}$ x 1
=0/3
$k_v$=0
$e_ss$=$\frac{A_2}{k_v}$
=$A_2$/0
$e_ss$=∞
Let $A_3$ is the magnitude for parabolic input
$k_a$=$\lim_(s\to 0)$ $S^2$ G(S) H(S)
=$k_v$=$\lim_(s\to 0) S^2$ $\frac{1}{(S^2+2S+3)}$ x 1
=0/3
$k_a$ =0
$e_ss$=$\frac{A_2}{k_a}$
=$A_3$/0
$e_ss$=∞