2
28kviews
The open loop transfer function of unity feedback system if G(S)=$\frac{k}{(S(TS+1))}$ By what factor the gain k should be multiplied so that damping ratio is increased from 0.3 to 0.8.

By what factor time constant ‘T’ should be multiplied so that damping ratio is reduced from 0.6 to 0.4.

1 Answer
2
3.0kviews

The closed loop transfer function is,

T.F=$\frac{(C(S))}{(R(S))}$

=$\frac{(G(S))}{(1+G(S)H(S))}$, H(S)=1

=$\frac{(\frac{k}{(S(TS+1))})}{(\frac{1+k}{(S(TS+1))} x1)}$

=$\frac{k}{(TS^2+S+k)}$

=$\frac{(\frac{k}{T})}{(\frac{S^2+1}{T S}+\frac{k}{T})}$

Comparing with the standard form of the equation

$\frac{(w_n^2)}{(S^2+2ξw_n S+w_n^2 )}$

$w_n^2$ =$\frac{k}{T}$

Therefore, $w_n$=${\sqrt{\frac{k}{T}}}$

$2ξw_n$=$\frac{1}{T}$

Therefore, ξ=$\frac{1}{2}{\sqrt{kT}}$

Let $ξ_1$=0.3 and $ξ_2$=0.8

$ξ_1$=$\frac{1}{2}{\sqrt{kT}}$

0.3=$\frac{1}{2}{\sqrt{kT}}$……….(1)

Let for $ξ_2$, k=$k_1$

Therefore, 0.8=$\frac{1}{2}{\sqrt{(k_1 T)}}$…..(2)

From equation (1) & (2)

${\sqrt{kT}}$=$\frac{1}{(2 x 0.3)}$ =1/0.6

${\sqrt{k_1 T}}$=$\frac{1}{(2 x 0.8)}$

=1/1.6

$\frac{\sqrt{kT}}{\sqrt{(k_1 T)}}$=$\frac{1}{0.6}$ x $\frac{1.6}{1}$

=1.6/0.6

$\frac{k}{k_1}$ =$\frac{2.56}{0.36}$

=7.11

$k_1$=0.1406k

Hence, the multiplying factor is 0.1406k.

Please log in to add an answer.