written 8.0 years ago by | • modified 5.2 years ago |
By what factor time constant ‘T’ should be multiplied so that damping ratio is reduced from 0.6 to 0.4.
written 8.0 years ago by | • modified 5.2 years ago |
By what factor time constant ‘T’ should be multiplied so that damping ratio is reduced from 0.6 to 0.4.
written 8.0 years ago by |
The closed loop transfer function is,
T.F=$\frac{(C(S))}{(R(S))}$
=$\frac{(G(S))}{(1+G(S)H(S))}$, H(S)=1
=$\frac{(\frac{k}{(S(TS+1))})}{(\frac{1+k}{(S(TS+1))} x1)}$
=$\frac{k}{(TS^2+S+k)}$
=$\frac{(\frac{k}{T})}{(\frac{S^2+1}{T S}+\frac{k}{T})}$
Comparing with the standard form of the equation
$\frac{(w_n^2)}{(S^2+2ξw_n S+w_n^2 )}$
$w_n^2$ =$\frac{k}{T}$
Therefore, $w_n$=${\sqrt{\frac{k}{T}}}$
$2ξw_n$=$\frac{1}{T}$
Therefore, ξ=$\frac{1}{2}{\sqrt{kT}}$
Let $ξ_1$=0.3 and $ξ_2$=0.8
$ξ_1$=$\frac{1}{2}{\sqrt{kT}}$
0.3=$\frac{1}{2}{\sqrt{kT}}$……….(1)
Let for $ξ_2$, k=$k_1$
Therefore, 0.8=$\frac{1}{2}{\sqrt{(k_1 T)}}$…..(2)
From equation (1) & (2)
${\sqrt{kT}}$=$\frac{1}{(2 x 0.3)}$ =1/0.6
${\sqrt{k_1 T}}$=$\frac{1}{(2 x 0.8)}$
=1/1.6
$\frac{\sqrt{kT}}{\sqrt{(k_1 T)}}$=$\frac{1}{0.6}$ x $\frac{1.6}{1}$
=1.6/0.6
$\frac{k}{k_1}$ =$\frac{2.56}{0.36}$
=7.11
$k_1$=0.1406k
Hence, the multiplying factor is 0.1406k.