written 8.0 years ago by | • modified 5.2 years ago |
Show that $\frac{(Tk_1-1)}{(Tk_2-1)}$=43.33, where $k_1$ & $k_2$ are values of ‘k’ for 0.6 & 0.2 overshoot respectively
written 8.0 years ago by | • modified 5.2 years ago |
Show that $\frac{(Tk_1-1)}{(Tk_2-1)}$=43.33, where $k_1$ & $k_2$ are values of ‘k’ for 0.6 & 0.2 overshoot respectively
written 8.0 years ago by |
T.F=$\frac{(C(S))}{(R(S))}$
=$\frac{(G(S))}{(1+G(S)H(S))}$
=$\frac{(\frac{k}{(S(1+TS})}{(1+\frac{k}{(S(1+TS)}.1)}$
=$\frac{(\frac{k}/{T})}{(S^2+\frac{S}{T}+\frac{k}{T})}$
Comparing with standard form
$\frac{(w_n^2)}{(S^2+2ξw_n S+w_n^2 )}$
$w_n^2$ =$\frac{k}{T}$
Therefore, $w_n$=$\sqrt{\frac{k}{T}}$
$2ξw_n$=$\frac{1}{T}$
Therefore, ξ=$\frac{1}{2}\sqrt{kT}$
Now for $M_P$=0.6,
Let ξ=$ξ_1$
Therefore, 0.6=$e^\frac{-πξ_1}{\sqrt{(1-ξ_1 2)}}$
Therefore,$ξ_1$=0.1602
For $M_P$=0.2,
Let ξ=$ξ_2$
Therefore, 0.2=$e^\frac{-πξ_2}{\sqrt{(1-ξ_2 2)}}$
Therefore, $ξ_2$=0.4559
$ξ_1$=0.1602, k=$k_1$
&$ξ_2$=0.4559, k=$k_2$
$ξ_1$=$\frac{1}{2}{\sqrt{(k_1 T)}}$
Therefore, 0.1602=$\frac{1}{2}{\sqrt{(k_1 T)}}$…………………(1)
$ξ_2$=$\frac{1}{2}{\sqrt{(k_2 T)}}$
Therefore, 0.4559=$\frac{1}{2}{\sqrt{(k_2 T)}}$)…………………(2)
For equation(1),
${\sqrt{(k_2 T)}}$=$\frac{1}{2}$ x 0.1602 =3.1210
$k_1 $T=9.74
$k_1$ T-1=8.7412……………….(3)
From equation (2),
${\sqrt{(k_2 T)}}$=$\frac{1}{2}$ x 0.4559)
=1.09673
$k_2$ T=1.2028
$k_2$ T-1=0.2028…………………..(4)
From equation (3) & (4),
$\frac{(k_1 T-1)}{(k_2 T-1)}$=$\frac{8.7412}{0.2028}$
=43.33