0
3.9kviews
Derive the Bezier curve equation from the following points P0(0,0) and P1(7, 6) P2(6, 5) and P2 (4, 0). Also find out the mid point of the curve. CIM)

Mumbai University > mechanical engineering > Sem 7 > CAD/CAM/CAE

Marks: 0 Marks

Year: Dec 2015

1 Answer
0
78views

Number of point i.e K= 4

Hence, we know that the degree of the Bezier Curve is n = k ā€“ 1 = 4 ā€“ 1 = 3.

Now, to obtain the equation of the Bezier curve in parametric format with parameter ā€˜uā€™, we know that

$$P(u) =\sum_{i=0}^nPi \times Bi,n(u)$$

Where, n=3 & Pi is the i^th control point & bi,n is define as,

$Bi,n =nCr \times u^i (1-u)^{n-i}$

Hence,

$Po( 1,3,0) and B_{0,1} = (1-u)^3 \\ P1( 5,6,0) and B_{1,3} = 3u(1-u)^2 \\ P2( 6,0,0) and B_{2,3} = 3u^2 (1-u) \\ P3 (7,2,0) and B_{3,3} =u^3 \\ Thus, P_0 \times B_{0,3} (u) + P_1 \times B_{1,3} (u) + P_2 \times B_{2,3} (u) + P_3 \times B_{3,3} (u) \\ P(u) = P_0 \times (1-u)^3 + P_1 \times 3u(1-u)^2 + P_2 \times 3u^2 (1-u) +P_3 \times u^3.$

It can be further be simplified and written in matrix form as.

$P(u) = (u^3 u^2 u^1 1) \begin{bmatrix}1&3&-3&1 \\ 3&-6&3&0 \\ -3&3&0&0 \\ 1&0&0&0 \end{bmatrix} \times \begin{bmatrix}0&0&0 \\ 7&6&0 \\ 6&5&0 \\ 4&0&0 \end{bmatrix} \\ P(u) = (u^3 u^2 u^1 1) \begin{bmatrix}7&3&0 \\ -24&-21&0 \\ 21&18&0 \\ 0&0&0 \end{bmatrix}$

Now, to obtain the points on the curve for u = 0.5, & 1.

$P(u = 0.5) = \bigg(\dfrac18 \ \ \ \ \dfrac14 \ \ \ \ \dfrac12 \ \ \ \ 1\bigg) \begin{bmatrix}7&3&0 \\ -24&-21&0 \\ 21&18&0 \\ 0&0&0\end{bmatrix} \hspace{3cm}=\bigg[ \dfrac{43}{8} \ \ \ \ \dfrac{33}{8} \ \ \ \ 0 \bigg] \\ P(u = 1) = (1 \ \ \ \ 1 \ \ \ \ 1 \ \ \ \ 1) \begin{bmatrix}7&3&0 \\ -24&-21&0 \\ 21&18&0 \\ 0&0&0 \end{bmatrix} \hspace{4cm}=[ 4 \ \ \ \ 0 \ \ \ \ 0 ]$

Please log in to add an answer.