G(S) =$\frac{K}{(S(1+S)(1+0.4S)}$
H(S) =1, unity feedback.
(1) For Ramp input
r (t)=4t,
k=2
Steady state error,
$e_ss$=$\frac{A}{k_v}$
$k_v$= $\lim_(s\to 0)$ S G(S) H(S)
=$\lim_(s\to 0)$ $S\frac{k}{(S(1+S)(1+0.4S)}$
=$\lim_(s\to 0)$ $S\frac{2}{(S(1+S)(1+0.4S)}$
=2/(1)(1)
$k_v $ = 2
$e_ss$=$\frac{A}{k_v}$ ,
As A=2 for Ramp input
$e_ss$=2/2
e_ss=1
(2) $e_ss$=0.2, k=?
same input Ramp of magnitude
A=2
$k_v$=$\lim_(s\to 0)$ S. G(S) H(S)
=$\lim_(s\to 0)$ $S\frac{k}{(S(1+S)(1+0.4S)}$
$k_v$=k/(1)(1)
$k_v$=k
$e_ss$=$\frac{A}{k_v}$
=$\frac{A}{k}$
0.2=2/k
k=2/0.2
k=10
(3) Steady state error for input step of magnitude A_1=2 and Ramp of magnitude A_2=6.
k=10.
For step input, position error coefficient
$k_p$=$\lim_(s\to 0)$ G(S) H(S)
=$\lim_(s\to 0)$ $\frac{k}{(S(1+S)(1+0.4S)}$ . 1
=$\lim_(s\to 0)$ $\frac{10}{(S(1+S)(1+0.4S)}$
=$\lim_(s\to 0)$ $\frac{10}{(0(1)(1)}$
=10/0
$k_p$=∞
For Ramp input velocity error coefficient,
$k_v$=$\lim_(s\to 0)$ S G(S) H(S)
=$\lim_(s\to 0)$ S$\frac{k}{(S(1+S)(1+0.4S)}$ . 1
=$\lim_(s\to 0)$ S$\frac{10}{(S(1+S)(1+0.4S)}$ .1
=$\lim_(s\to 0)$ $\frac{10}{(1)(1)}$
=10
$k_v$=10
$e_ss$=$\frac{A_1}{(1+k_p)}$+$\frac{A_2}{k_v}$
=$\frac{2}{∞}$+$\frac{6}{10}$
=0+0.6
$e_ss$=0.6