0
13kviews
Reflect a triangle ABC, A(2,4), B(4,6) & C(2,6) about a line 2y - x - 4 = 0. Find out the new vertices of a triangle.

Mumbai University > mechanical engineering > Sem 7 > CAD/CAM/CAE

Marks: 8 Marks

Year: May 2016

1 Answer
2
1.4kviews

enter image description here

2Y – X – 4 = 0

Y = 0.5X +2

tan⁡θ = m = 0.5

∴y=mx+c

θ=26.56°

Steps:-

  • Tr = Translate point ( 0, -2 ) to origin O ( 0, 0 )
  • R = Rotate the line about origin by .θ=-26.56°
  • Reflect the object about x-axis( Mx)
  • Inverse Rotate the line about origin by .θ=26.56°
  • Tr1 = Inverse Translation to original position a ( 0, 2)

[T]=(Tr)(R)(Mx)(R)1(T)1

[T]=[100010txty1]×[cos26.56sin26.560sin26.56cos26.560001]×[100010001]×[cos26.56sin26.560sin26.56cos26.560001]×[100010txty1][T]=[100010021]×[cos26.56sin26.560sin26.56cos26.560001]×[100010001]×[cos26.56sin26.560sin26.56cos26.560001]×[100010021][T]=[0.60010.799500.79950.600.8940.21121][ABC]=[241461261]×[0.60010.799500.79950.600.8940.21121][ABC]=[2.82.415.62.814.41.21]A=2.8,2.4B=5.6,2.8C=4.4,1.2

Please log in to add an answer.