1
8.4kviews
Find fourier series for f(x)=3x26πx+2π212,(0,2π) Hence deduce that 112+122+132+−−−=π26
1 Answer
written 8.2 years ago by | modified 2.8 years ago by |
a0=12π2π∫0f(2)dx=12π2π∫0(3x2−6πx+2π2)12dx=124π[x3−3πx2+2πx2]2π0
=124π[8π3−12π3+4π3]=0an=1π2π∫0f(x)cos(nx)dx=1π2π∫0(3x2−πx+2π2)12cosnx dx112π[(3x2−6πx+2π2)8mnxn−(6x−6π)(−cosnxn2)+(6)(−sinnxn3)]2π0=112π[6πn2+6π/n2]=1n2bn=1π2π∫0f(x)sinnx dx=112π2π∫0(3x2−6πx+2π2)sin(nx)dx=112π[(3x2−6πx+2π2)(−cosnxn)−(6x−6π)(−sinnxn2)+(6)(cosnxn3)]2π0=112π[(12π2−12π2+2π2)(−1n)+6n3−(2π2)(−1n)−6n3]=0f(x)=(3x2−6πx+2π2)12=∞∑n=01n2cos(nx)put x=0π26=112+122+132−−−−