1
8.4kviews
Find fourier series for f(x)=3x26πx+2π212,(0,2π) Hence deduce that 112+122+132+=π26
1 Answer
1
1.2kviews

a0=12π2π0f(2)dx=12π2π0(3x26πx+2π2)12dx=124π[x33πx2+2πx2]2π0

=124π[8π312π3+4π3]=0an=1π2π0f(x)cos(nx)dx=1π2π0(3x2πx+2π2)12cosnx dx112π[(3x26πx+2π2)8mnxn(6x6π)(cosnxn2)+(6)(sinnxn3)]2π0=112π[6πn2+6π/n2]=1n2bn=1π2π0f(x)sinnx dx=112π2π0(3x26πx+2π2)sin(nx)dx=112π[(3x26πx+2π2)(cosnxn)(6x6π)(sinnxn2)+(6)(cosnxn3)]2π0=112π[(12π212π2+2π2)(1n)+6n3(2π2)(1n)6n3]=0f(x)=(3x26πx+2π2)12=n=01n2cos(nx)put x=0π26=112+122+132

Please log in to add an answer.