written 7.9 years ago by | • modified 7.9 years ago |
The following steps gives mathematical analysis of velocity modulation for two cavity Klystron.
Due to potential difference $V_0$ between anode and cathode, the electrons from a high current density beam with velocity $ϑ_0$
$ϑ_0=\sqrt{2e V_0/M}$
Where $\text{e = charge an electron} \\ \text{M = Mass of electron}$
The time taken by beam to cross cavity gap ‘d’ is the transit time and transit angle through gap ‘d’ is,
Transit time $= t_2 – t_1 \\ t_g=\dfrac{d}{v_0}$
Transit angle = wtg -------- (1)
The input given to buncher cavity is the RF input.
Average RF input in the gap of buncher cavity is
$V_{av}=\dfrac{1}{t_g \int^{t_2}_{t_1}V_1 \sin(wt)dt}=\dfrac{V_1}{wtg} (-\cos wt)_{t_1}^{t_2} \\ V_{av}=\dfrac{V_1}{wtg} \bigg[\sin \bigg(\dfrac{wt_1+wt_2}{2}\bigg).\sin\bigg(\dfrac{wt_1.wt_2}{2}\bigg) \bigg] ………….\text{by trignometric} \\ V_{avg}=\dfrac{V_1}{wtg}\bigg[\sin\bigg(wt_1+\dfrac{\theta_g}{2}\bigg).\sin \bigg(\dfrac{wtg}{2}\bigg)\bigg].....................\text{(from(1))}$
Let $β_1=\dfrac{\sin \dfrac{θ_g}{2}}{\dfrac{θ_g}{2}}$=buncher cavity beam coupling coefficient
$V_{avg}=V_1.\beta_1 \sin \bigg(wt_1+\dfrac{\theta_g}{2}\bigg) ...................(2)$
When the electron passes through the buncher cavity their velocity either increases or decreases depending on positive or negative cycle of KF ZIP. Let Vavg = velocity of electron at mid of gap
$\dfrac{v_{avg}}{V_0} =\sqrt{\dfrac{V_0+V_av}{V_0}} \\ V_{avg}=V_0 \sqrt{1+\dfrac{V_1 β_1}{V_0} \sin\bigg(wt_1+\dfrac{θ_g}{2}} \bigg) ………(from (2))$
Let $M=\dfrac{V_1 β_1}{V_0}$ =Dept of modulation
$V_{avg}=V_0\sqrt{1+M \sin \bigg(wt_1+\dfrac{\theta_g}{2}}\bigg)$