Given
$Z_L = 1100+ j100 Ω \\
Z_0 = 50Ω$
Step 1:
Step 2:
Normalized $Z_L$
$\overline{z_L}=\dfrac{Z_L}{Z_0} =\dfrac{100+j100}{50}=2+2j$
Step 3:
Draw VSWR 0 and get π
$\overline{yL}=0.25-j0.25$ (From smith chart)
Step 4:
To find $\overline{yd1}$
Move on VSWR 0 in clockwise direction from $\overline{y_L}$ by distance of 0.4λ.
$\overline{yd1}=0.55-j1.1$
Step 5:
To draw rotated unity 0.
Distance between two stub is $3λ/8.$
i.e $\dfrac{3 \times 720}{8}=270^0$
Rotate actual unity 0 by $270^0$ toward load i.e anticlockwise.
Step 6:
To find $\overline{y11}$
Move on r = 0.55 in clockwise direction till it intersect rotated unity to get $\overline{y11}$
$\overline{y11} = 0.55 – j0.1$
Step 7:
To find $\overline{y_{S1}}$
WKT, $\overline{y11} =\overline{yd1}+\overline{ys1} \\
0.55 – j0.1 = 0.55 – j1.1 + \overline{ys1} \\
\overline{ys1}= +1.0j$
Step 8:
To find ‘l1’
Plot $\overline{ys1}$ and move in anticlockwise direction till short ckt point on smith chart.
l1=0.375λ
Step 9:
To find $\overline{yd2}$
Rotate $\overline{y11}$ by a length of $3λ/8 ( \ \ \ or \ \ \ 270^0)$ in clockwise direction.
$\overline{yd2}=1-j0.6$
Step 10:
To find $\overline{ys2}$.
WKT, $\overline{y22}= \overline{yd2}+ \overline{ys2} \\
1 + j0 = 1-j0.6 + \overline{ys2}$
$∴ \overline{ys2}= +j0.6$
Step 11:
To find ‘l2’
Plot $\overline{ys2}$ on smith chart and move in anticlockwise till short ckt point on smith Chart.
l2 = 0.336λ
Step 12:
Final diagram