0
2.4kviews
A wheel is rolling along a straight path without slipping. Determine velocity of points A, B and P. $OP = 600 mm, \omega = 4 rad/sec, V_0=4m/s $
1 Answer
written 7.9 years ago by |
$$V_A= ?,V_B= ?OP=600mm,V_P= ?$$
$ω = 4 rad/s , V_0 = 4m/s$
Instantaneous centre of wheel is at point of contact.
$V_0=I_0.w \\ ∴I_0 = \dfrac {V_0} w = \dfrac 44=1m=1000mm $
ID = Radius = 1000mm
IA = D = 2000 mm
And $I_B=\sqrt{1000^2+1000^2} =1414.2 mm \\ V_A=IA.ω=2000×4=8000mm/s=8 m/s \\ V_B=IB.ω=1414.2×4=5656.8 mm/ s=5.6568 m/ s \\ ∠POI=90+20=110^0 $
By cosine rule,
$IP=\sqrt{(OP^2+OI^2-2.OP.OI.\cos ∠POI } \\ IP=\sqrt{600^2+1000^2-2×600×1000 \cos 110^0 }=1400 m \\ V_P=IP.W=1400×4=5600 m/s=5.6 m/s $
Instantaneous velocity of $A=8 m/s $
Instantaneous velocity of $B=5.6568 m/s$
Instantaneous velocity of $C=5.6 m/s $