1
6.8kviews
Due to slipping, points A and B on the rim of the disc have the velocities $V_a = 1.5m/s$ to the right and $V_b = 3m/s$ to the left as shown in figure.

Determine the velocities of the centre point C and point D on the rim at this instant. Take radius of disc 0.24m.

enter image description here

1 Answer
0
729views

Instantaneous centre of rotation, I of the disk lie on line perpendicular to the velocities at point A and B.

Let $IA=x$

Radius $= 0.24m$ (Given)

$IB = 0.48 – x$

w- Angular velocity of the disk,

$w=\dfrac vr \\ \dfrac {V_A}{IA} = \dfrac {V_B}{IB} \\ \dfrac {1.5}x= \dfrac 3{0.48-x} \\ x=0.16 m \\ IA=0.16 m \space and\space IB=0.32m \\ w= \dfrac vr= \dfrac {V_A}{IA} = \dfrac {1.5}{0.16} = 9.375 rad/s \\ IC=0.24-0.16=0.08 m $

enter image description here

Instantaneous velocity of center c,

enter image description here

$V_c=rw=IC ×ω=0.08 ×9.375=0.75m/s \\ V_c=0.75 m/s \\ In\space ∆ ICD,\\ ∠DCI=180-45=135^0 \\ IC=0.08 ,CD=0.24 \\ ID^2=IC^2+ CD^2- 2IC ×CD×\cos 135^0 \\ =0.08^2+ 0.24^2- 2×0.08 ×0.24 ×\cos⁡135 \\ ID=0.3019 m $

Instantaneous velocity of D,

$V_D=rw=ID ×W \\ =0.3019 ×9.375=2.8305 m/s$

Please log in to add an answer.