written 7.9 years ago by | • modified 4.5 years ago |
Determine the velocities of the centre point C and point D on the rim at this instant. Take radius of disc 0.24m.
written 7.9 years ago by | • modified 4.5 years ago |
Determine the velocities of the centre point C and point D on the rim at this instant. Take radius of disc 0.24m.
written 7.9 years ago by |
Instantaneous centre of rotation, I of the disk lie on line perpendicular to the velocities at point A and B.
Let $IA=x$
Radius $= 0.24m$ (Given)
$IB = 0.48 – x$
w- Angular velocity of the disk,
$w=\dfrac vr \\ \dfrac {V_A}{IA} = \dfrac {V_B}{IB} \\ \dfrac {1.5}x= \dfrac 3{0.48-x} \\ x=0.16 m \\ IA=0.16 m \space and\space IB=0.32m \\ w= \dfrac vr= \dfrac {V_A}{IA} = \dfrac {1.5}{0.16} = 9.375 rad/s \\ IC=0.24-0.16=0.08 m $
Instantaneous velocity of center c,
$V_c=rw=IC ×ω=0.08 ×9.375=0.75m/s \\ V_c=0.75 m/s \\ In\space ∆ ICD,\\ ∠DCI=180-45=135^0 \\ IC=0.08 ,CD=0.24 \\ ID^2=IC^2+ CD^2- 2IC ×CD×\cos 135^0 \\ =0.08^2+ 0.24^2- 2×0.08 ×0.24 ×\cos135 \\ ID=0.3019 m $
Instantaneous velocity of D,
$V_D=rw=ID ×W \\ =0.3019 ×9.375=2.8305 m/s$