0
3.2kviews
A fighter plane moving horizontally with a constant velocity of 200 m/sec releases a bomb from an altitude of 400 m.

Find the velocity and direction of the bomb just before it strikes the ground. Also determine the distance travelled by the plane before the bomb just strikes the ground.

1 Answer
2
334views

Given

$u_x=200m/s \\ u_y=0 m/s \\ S_y=-400m \\ a_x=0 \\ a_y= -9.81m/s$

enter image description here

Horizontal

$V_y^2=u_y^2+2a_y.s_y \\ v_x=u_x=200m/s $

vertical

$V_x^2=u_x^2+2a_x.s_x \\ = 0+2(-9.81)(-400) \\ V_y = 88.589 m/s$

Velocity of bomb,

$V=\sqrt{V_x^2+V_y^2 } = \sqrt{200^2+88.589^2 } \\ V= 218.74 m/s \\ θ=\tan^{-1} (\dfrac {V_y}{V_x} )= \tan^{-1} (\dfrac {88.589}{200}) \\ θ=23.89^0\\ S_y=u_y t+1/2 a_y t^2 \\ -400 = 0 – \dfrac 12 \times 9.81 \times t^2 \\ t = 9.03 sec$

Distance travelled by plane in 9.03 sec

$s=ut+\dfrac 12 at^2 $

$ = 200 \times 9.03 + 0 $ … Acceleration in X.dir, $a_x=0$

$ S = 1806.09 m$

Please log in to add an answer.